Empirical Economics

, Volume 36, Issue 2, pp 339–365 | Cite as

Do coincident indicators have one-factor structure?

Original Paper

Abstract

The Stock–Watson coincident index of business cycles and its extensions assume a static linear one-factor model for the component indicators. This paper tests that assumption. Since the factor structure restricts the autocovariance matrices of the component indicators, a distance test, or the Hansen–Sargan test of over-identifying restrictions, is applicable. This also gives a GMM counterpart of the Stock–Watson coincident index, or a new composite index (CI) of coincident indicators, as a by-product. For the four US coincident indicators that currently make up the CI, the test strongly rejects the null hypothesis of static linear one-factor structure.

Keywords

Business cycle Composite index Factor analysis Autocovariance structure Minimum distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner DJ, Hsiao C, Kapteyn A and Wansbeek T (1984). Latent variable models in econometrics. In: Griliches, Z and Intriligator, MD (eds) Handbook of econometrics, vol 2., pp 1321–1393. Elsevier, Amsterdam Google Scholar
  2. Altonji JG and Segal LM (1996). Small-sample bias in GMM estimation of covariance structures. J Bus Econ Stat 14: 353–366 CrossRefGoogle Scholar
  3. Andrews DWK (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59: 817–858 CrossRefGoogle Scholar
  4. Berk KN (1974). Consistent autoregressive spectral estimates. Ann Stat 2: 489–502 CrossRefGoogle Scholar
  5. Breitung J and Eickmeier S (2006). Dynamic factor models. In: Hübler, O and Frohn, J (eds) Modern Econometric Analysis, pp 25–40. Springer, Heidelberg CrossRefGoogle Scholar
  6. Chauvet M (1998). An econometric characterization of business cycle dynamics with factor structure and regime switching. Int Econ Rev 39: 969–996 CrossRefGoogle Scholar
  7. Clark TE (1996). Small-sample properties of estimators of nonlinear models of covariance structure. J Bus Econ Stat 14: 367–373 CrossRefGoogle Scholar
  8. Davidson J (1994). Stochastic limit theory. Oxford University Press, Oxford CrossRefGoogle Scholar
  9. Davidson J (2002). Consistency of kernel variance estimators for sums of semiparametric linear processes. Econom J 5: 160–175 CrossRefGoogle Scholar
  10. (2000). A strong consistency proof for heteroskedasticity and autocorrelation consistent covariance matrix estimators. Econom Theory 16: 262–268 Google Scholar
  11. Davidson J (2000). Consistency of kernel estimators of heteroscedastic and autocorrelated covariance matrices. Econometrica 68: 407–423 CrossRefGoogle Scholar
  12. den Haan WJ, Levin A (1996) Inferences from parametric and non-parametric covariance matrix estimation procedures. Technical Working Paper 195, National Bureau of Economic ResearchGoogle Scholar
  13. den Haan WJ, Levin A (1997)A practitioner’s guide to robust covariance matrix estimation. In: Maddala GS, Rao CR (eds) Handbook of Statistics, vol 15. Elsevier, Amsterdam, pp 299–342Google Scholar
  14. den Haan WJ, Levin A (2000) Robust covariance matrix estimation with data-dependent VAR prewhitening order. Technical Working Paper 255, National Bureau of Economic ResearchGoogle Scholar
  15. Diebold FX and Rudebusch GD (1996). Measuring business cycles: a modern perspective. Rev Econ Stat 78: 67–77 CrossRefGoogle Scholar
  16. Doornik JA (2006) Ox: An object-oriented matrix programming language. Timberlake ConsultantsGoogle Scholar
  17. Fuller WA (1996). Introduction to statistical time series, 2nd edn. Wiley, New York Google Scholar
  18. Geweke J (1977). The dynamic factor analysis of economic time-series models. In: Aigner, DJ and Goldberger, AS (eds) Latent variables in socio-economic models, pp 365–383. North-Holland, Amsterdam Google Scholar
  19. Gregory AW, Lamarche JF and Smith GW (2002). Information-theoretic estimation of preference parameters: macroeconomic applications and simulation evidence. J Econom 107: 213–233 CrossRefGoogle Scholar
  20. Hall AR (2005). Generalized method of moments. Oxford University Press, Oxford Google Scholar
  21. Hansen BE (1992). Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica 60: 967–972 CrossRefGoogle Scholar
  22. Jansson M (2002). Consistent covariance matrix estimation for linear processes. Econom Theory 18: 1449–1459 Google Scholar
  23. Kim CJ and Nelson CR (1998). Business cycle turning points, a new coincident index and tests of duration dependence based on a dynamic factor model with regime switching. Rev Econ Stat 80: 188–201 CrossRefGoogle Scholar
  24. Kim MJ and Yoo JS (1995). New index of coincident indicators: a multivariate Markov switching factor model approach. J Monet Econ 36: 607–630 CrossRefGoogle Scholar
  25. Kitamura Y and Stutzer M (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica 65: 861–874 CrossRefGoogle Scholar
  26. Mariano RS and Murasawa Y (2003). A new coincident index of business cycles based on monthly and quarterly series. J Appl Econom 18: 427–443 CrossRefGoogle Scholar
  27. Mariano RS, Murasawa Y (2004) Constructing a coincident index of business cycles without assuming a one-factor model. Discussion Paper 2004-6, College of Economics, Osaka Prefecture UniversityGoogle Scholar
  28. Newey WK and McFadden DL (1994). Large sample estimation and hypothesis testing. In: Engle, RF and McFadden, DL (eds) Handbook of econometrics, vol 4, pp 2111–2245. Elsevier, Amsterdam Google Scholar
  29. Newey WK and West KD (1994). Automatic lag selection in covariance matrix estimation. Rev Econ Stud 61: 631–653 CrossRefGoogle Scholar
  30. Stock JH and Watson MW (1989). New indexes of coincident and leading economic indicators. NBER Macroecon Ann 4: 351–409 CrossRefGoogle Scholar
  31. Stock JH and Watson MW (1991). A probability model of the coincident economic indicators. In: Lahiri, K and Moore, GH (eds) Leading economic indicators, pp 63–89. Cambridge University Press, Cambridge Google Scholar
  32. Stock JH and Watson MW (2006). Forecasting with many predictors. In: Elliot, G, Granger, CWJ and Timmermann, A (eds) Handbook of economic forecasting, vol 1, pp 515–554. Elsevier, Amsterdam CrossRefGoogle Scholar
  33. White H (2001). Asymptotic theory for econometricians, revised edn. Academic Press, New York Google Scholar
  34. Wooldridge JM (2002). Econometrics of cross section and panel data. MIT Press, Cambridge Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of EconomicsOsaka Prefecture UniversitySakaiJapan

Personalised recommendations