Empirical Economics

, 36:201 | Cite as

A new approach to modeling co-movement of international equity markets: evidence of unconditional copula-based simulation of tail dependence

  • Wei Sun
  • Svetlozar Rachev
  • Frank J. Fabozzi
  • Petko S. Kalev
Original Paper


Analyzing equity market co-movements is important for risk diversification of an international portfolio. Copulas have several advantages compared to the linear correlation measure in modeling co-movement. This paper introduces a copula ARMA-GARCH model for analyzing the co-movement of international equity markets. The model is implemented with an ARMA-GARCH model for the marginal distributions and a copula for the joint distribution. After goodness of fit testing, we find that the Student’s t copula ARMA(1,1)-GARCH(1,1) model with fractional Gaussian noise is superior to alternative models investigated in our study where we model the simultaneous co-movement of nine international equity market indexes. This model is also suitable for capturing the long-range dependence and tail dependence observed in international equity markets.


Copula Fractional Gaussian noise High-frequency data Self-similarity Tail dependence 

JEL Classification

C15 C46 C52 G15 


  1. Aït-Sahalia Y (2004) Estimating diffusions with discretely and possibly randomly spaced data: a general theory. Ann Stat 32: 2186–2222CrossRefGoogle Scholar
  2. Andersen TG, Bollerslev T, Diebold FX, Ebens H (2001) The distribution of realized stock return volatility. J Financ Econ 61: 43–76CrossRefGoogle Scholar
  3. Ang A, Chen J (2002) Asymmetric correlations of equity portfolios. J Financ Econ 63: 443–494CrossRefGoogle Scholar
  4. Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econ 73: 5–59Google Scholar
  5. Bardet J, Lang G, Oppenheim G, Philippe A, Taqqu M (2003) Generators of long-range dependent processes: a survey. In: Doulkhan P, Oppenheim G, Taqqu M(eds) Theory and applications of long-range dependence. Birkhäuser, BostonGoogle Scholar
  6. Beran J (1994) Statistics for long-memory processes. Chapman & Hall, New YorkGoogle Scholar
  7. Bollerslev T, Wright JH (2000) Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data. J Econ 98: 81–106Google Scholar
  8. Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, West SussexGoogle Scholar
  9. Dacorogna M, Gençay R, Müller UA, Olsen R, Pictet O (2001) An introduction to high-frequency finance. Academic Press, San DiegoGoogle Scholar
  10. Deheuvels P (1979) La fonction de dependance empirique et ses proprietes, Un test non paramtrique d’independance. Acad R Belg Bull C1 Sci 65: 274–292Google Scholar
  11. Embrechts P, Lindskog F, McNeil A (2003) Modelling dependence with copulas and applications to risk management. In: Rachev S(eds) Handbook of heavy tailed distributions in finance. Elsevier, AmsterdamGoogle Scholar
  12. Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 50: 987–1008CrossRefGoogle Scholar
  13. Engle R, Russell J (1998) Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66: 1127–1162CrossRefGoogle Scholar
  14. Fama E (1963) Mandelbrot and the stable Paretian hypothesis. J Bus 36: 420–429CrossRefGoogle Scholar
  15. Fama E (1965) The behavior of stock market prices. J Bus 38: 34–105CrossRefGoogle Scholar
  16. Fama E, Roll R (1971) Parameter estimates for symmetric stable distributions. J Am Stat Assoc 66: 331–338CrossRefGoogle Scholar
  17. Genest C, Rivest L (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88: 1034–1043CrossRefGoogle Scholar
  18. Hols M, de Vries C (1991) The limiting distribution of extremal exchange rate returns. J Appl Econ 6: 287–302CrossRefGoogle Scholar
  19. Hong Y, Tu J, Zhou G (2007) Asymmetries in stock returns: statistical tests and economic evaluation. Rev Financ Stud 20: 1547–1581CrossRefGoogle Scholar
  20. Hu L (2006) Dependence patterns across financial markets: a mixed copula approach. Appl Financ Econ 16: 717–729CrossRefGoogle Scholar
  21. Hurst H (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng 116: 770–808Google Scholar
  22. Hurst H (1955) Methods of using long-term storage in reservoirs. Proc Inst Civil Eng 1: 519–577Google Scholar
  23. Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, LondonGoogle Scholar
  24. Longin F, Solnik B (2001) Extreme correlation of international equity markets. J Financ 56: 649–676CrossRefGoogle Scholar
  25. Mandelbrot B (1963) New methods in statistical economics. J Polit Econ 71: 421–440CrossRefGoogle Scholar
  26. Mandelbrot B (1983) The fractal geometry of nature. Freeman, San FranciscoGoogle Scholar
  27. Mandelbrot B, Van Ness J (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10: 422–437CrossRefGoogle Scholar
  28. Mandelbrot B, Wallis J (1968) Noah, Joseph and operational hydrology. Water Resour Res 4: 909–918CrossRefGoogle Scholar
  29. Maejima M (1983) On a class of self-similar processes. Zeitschrift Vahrscheinlichkeitstheorie verwandte Gebiete 62: 235–245CrossRefGoogle Scholar
  30. Maejima M, Rachev S (1987) An ideal metric and the rate of convergence to a self-similar process. Ann Probab 15: 702–727CrossRefGoogle Scholar
  31. Mansfield P, Rachev S, Samorodnitsky G (2001) Long strange segments of a stochastic process and long-range dependence. Ann Appl Probab 11: 878–921CrossRefGoogle Scholar
  32. Marshal R, Zeevi A (2002) Beyond correlation: extreme co-movements between financial assets. Working paper, Columbia Business SchoolGoogle Scholar
  33. Mittnik S, Rachev S (1993) Modeling asset returns with alternative stable models. Econ Rev 12: 261–330CrossRefGoogle Scholar
  34. Mittnik S, Paolella M, Rachev S (2002) Stationarity of stable power-GARCH processes. J Econ 106: 97–107Google Scholar
  35. Müller U, Dacorogna M, Olsen R, Pictet O, Schwarz M, Morgenegg C (1990) Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis. J Bank Finance 14: 1189–1208CrossRefGoogle Scholar
  36. Nelsen R (2006) An introduction to copulas (2nd edn). Springer, New YorkGoogle Scholar
  37. Patton A (2006) Modelling asymmetric exchange rate dependence. Int Econ Rev 47(2): 527–556CrossRefGoogle Scholar
  38. Paxson V (1997) Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic. Comput Commun Rev 27: 5–18CrossRefGoogle Scholar
  39. Rachev, S (eds) (2003) Handbook of heavy tailed distributions in finance. Elsevier, AmsterdamGoogle Scholar
  40. Rachev S, Mittnik S (2000) Stable paretian models in finance. Wiley, New YorkGoogle Scholar
  41. Rachev S, Samorodnitsky G (2001) Long strange segments in a long range dependent moving average. Stoch Process Appl 93: 119–148CrossRefGoogle Scholar
  42. Rachev S, Menn C, Fabozzi F (2005) Fat-tailed and skewed asset return distributions. Wiley, New JerseyGoogle Scholar
  43. Samorodnitsky G (1994) Possible sample paths of self-similar alpha-stable processes. Stat Probab Lett 19: 233–237CrossRefGoogle Scholar
  44. Samorodnitsky G, Taqqu M (1994) Stable non-gaussian random processes: stochastic models with infinite variance. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  45. Sklar A (1959) Fonctions de Réparitition à n dimensions et Leurs Marges. Publ l’Inst Stat l’Univ Paris 8: 229–231Google Scholar
  46. Solnik B, Boucrelle C, Le Y.F (1996) International market correlation and volatility. Financ Anal J 52: 17–34CrossRefGoogle Scholar
  47. Stoev S, Pipiras V, Taqqu M (2002) Estimation of the self-similarity parameter in linear fractional stable motion. Signal Process 82: 1873–1901CrossRefGoogle Scholar
  48. Stoev S, Taqqu M (2004) Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform. Fractals 12: 95–121CrossRefGoogle Scholar
  49. Stoyanov S, Racheva-Iotova B (2004) Univariate stable laws in the field of finance—parameter estimation. J Concrete Appl Math 2: 24–49Google Scholar
  50. Sun W, Svetlozar R, Fabozzi F (2007) Fractals or I.I.D.: evidence of long-range dependence and heavy tailedness from modeling German equity market returns. J Econ Bus 59: 575–595CrossRefGoogle Scholar
  51. Sun W, Rachev S, Fabozzi F (2007b) Long-range dependence, fractal processes, and intra-daily data. In: Seese D, Weinhardt C, Schlottmann F (eds) Handbook of IT and Finance. Springer, Heidelberg (in press)Google Scholar
  52. Sun W, Rachev S, Fabozzi F, Kalev P (2008) Fratals in duration: capturing long-range dependence and heavy tailedness in modeling trade duration. Ann Financ 4: 217–241CrossRefGoogle Scholar
  53. Wasserfallen W, Zimmermann H (1985) The behavior of intradaily exchange rates. J Bank Finance 9: 55–72CrossRefGoogle Scholar
  54. Willinger W, Paxson V, Taqqu M (1998) Self-similarity and heavy tails: structural modeling of network traffic. In: Adler R, Feldman R, Taqqu M(eds) A practical guide to heavy tails. Birkhäuser, BostonGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wei Sun
    • 1
  • Svetlozar Rachev
    • 1
    • 2
  • Frank J. Fabozzi
    • 3
  • Petko S. Kalev
    • 4
  1. 1.Institute for Statistics and Mathematical EconomicsUniversity of Karlsruhe, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of Statistics and Applied ProbabilityUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Yale School of ManagementNew HavenUSA
  4. 4.Department of Accounting and FinanceMonash UniversityMelbourneAustralia

Personalised recommendations