Advertisement

Empirical Economics

, Volume 34, Issue 1, pp 59–80 | Cite as

Spatial analysis of urban growth in Spain, 1900–2001

  • Julie Le GalloEmail author
  • Coro Chasco
Original Paper

Abstract

The purpose of this paper is to improve the knowledge of the Spanish urban system. We study the evolution of population growth among the group of 722 municipalities included in the Spanish urban areas over the period 1900–2001. A spatial SUR model is estimated for Zipf’s law and shows the existence of two main phases: divergence (1900–1980) and convergence (1980–2001). Then, the cross-sectional distribution of urban population is characterized by means of nonparametric estimations of density functions and the growth process is modeled as a first-order stationary Markov chain. Spatial effects are finally introduced within the Markov chain framework using regional conditioning. This analysis shows a low interclass mobility, i.e., a high-persistence of urban municipalities to stay in their own class from one decade to another over the whole period, and the influence of the geographical environment on urban population dynamism.

Keywords

Convergence Urban growth Spatial autocorrelation Spatial SUR models Markov chains 

JEL Classifications

C14 C21 O18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya T (1985) Advanced econometrics. Harvard University Press, CambridgeGoogle Scholar
  2. Anderson G, Ge Y (2005) The size distribution of Chinese cities. Reg Sci Urban Econ 35:756–776CrossRefGoogle Scholar
  3. Anselin L (1988) Spatial econometrics: Methods and models. Kluwer, DordrechtGoogle Scholar
  4. Anselin L, Le Gallo J, Jayet H (2007) Spatial panel econometrics. In: Matyas L, Sevestre P (eds) The econometrics of panel data, 3rd edn. Kluwer, DordrechtGoogle Scholar
  5. Bickenbach F, Bode E (2003) Evaluating the Markov property in studies of economic convergence. Int Reg Sci Rev 26:363–392CrossRefGoogle Scholar
  6. Black D, Henderson V (1999) Spatial evolution of population and industry in the United States (AEA Papers and Proceedings). Am Econ Rev 89:321–327CrossRefGoogle Scholar
  7. Black D, Henderson V (2003) Urban evolution in the USA. J Econ Geogr 3:343–372CrossRefGoogle Scholar
  8. Blakman S, Garretsen H, Van Marrewijk C, Van den Berg M (1999) The return of Zipf: towards a further understanding of the rank-size distribution. J Reg Sci 39:183–213CrossRefGoogle Scholar
  9. Bulli S (2001) Distribution dynamics and cross-country convergence: a new approach. Scott J Polit Econ 48:226–243CrossRefGoogle Scholar
  10. Cheshire P, Magrini S (2000) Endogenous processes in European regional growth: convergence and policy. Growth Change 31:455–479CrossRefGoogle Scholar
  11. Cordoba JC (2003) On the distribution of city sizes. Mimeo, Economics Department, Rice UniversityGoogle Scholar
  12. Davis D, Weinstein D (2002) Bones, bombs, and break points: the geography of economic activity. Am Econ Rev 92:1269–89CrossRefGoogle Scholar
  13. Dobkins L, Ioannides YM (2000) Dynamic evolution of the US city size distribution. In: Huriot JM, Thisse JF (eds) Economics of cities. Cambridge University Press, Cambridge, pp 217–260Google Scholar
  14. Duranton G (2006) Some foundations for Zipf’s law: product proliferation and local spillovers. Reg Sci Urban Econ 36:542–563CrossRefGoogle Scholar
  15. Eaton J, Eckstein Z (1997) City and growth: theory and evidence from France and Japan. Reg Sci Urban Econ 17:443–474CrossRefGoogle Scholar
  16. Esteve A, Devolder D (2004) De la ley rango-tamaño (ranz-size) a la ley log-normal: los procesos aleatorios en el crecimiento demográfico de los agregados de población. VII Congreso de la Asociación de Demografía Histórica, GranadaGoogle Scholar
  17. Fielding AJ (1989) Migration and urbanization in Western Europe since 1950. Geogr J 155:60–69CrossRefGoogle Scholar
  18. Fingleton B (1983a) Independence, stationarity, categorical spatial data and the chi-squared test. Environ Plann A15:483–499CrossRefGoogle Scholar
  19. Fingleton B (1983b) Log-linear models with dependent spatial data. Environ Plann A15:801–814CrossRefGoogle Scholar
  20. Fingleton B (1986) Analyzing cross-classified data with inherent spatial dependence. Geogr Anal 18:48–61CrossRefGoogle Scholar
  21. Fingleton B (1999) Estimates of time to economic convergence: an analysis of regions of the European Union. Int Reg Sci Rev 22:5–34Google Scholar
  22. Fingleton B (2001) Theoretical economic geography and spatial econometrics: dynamic perspectives. J Econ Geogr 1:201–225CrossRefGoogle Scholar
  23. Fingleton B, Lopez-Bazo E (2003) Explaining the distribution of manufacturing productivity in the EU regions. In: Fingleton B (ed) European regional growth. Springer, Heidelberg, pp 375–409Google Scholar
  24. Fusi JP, Vilar S, Preston P (1983) De la dictadura a la democracia. Desarrollismo, crisis y transición. Historia 16, vol. XXVGoogle Scholar
  25. Gabaix X (1999a) Zipf’s law and the growth of cities (AEA Papers and Proceedings). Am Econ Rev 89:129–132CrossRefGoogle Scholar
  26. Gabaix X (1999b) Zipf’s law for cities: an explanation. Quar J Econ 114:759–767Google Scholar
  27. Gabaix X, Ibragimov R (2006) Rank  − 1/2: a simple way to improve the OLS estimation of tail exponents. Available for download at: http://econ-www.mit.edu/faculty/index.htm?prof_id=xgabaix&type=paperGoogle Scholar
  28. Gabaix X, Ioannides YM (2004) The evolution of city size distributions. In: Henderson V, Thisse JF (eds) Handbook of regional and urban economics, vol 4. North Holland, Amsterdam, pp 2341–2378Google Scholar
  29. Grossman G, Helpman E (1991) Innovation and growth in the world economy. MIT Press, CambridgeGoogle Scholar
  30. Hamilton JD (1994) Time series analysis. Princeton University Press, PrincetonGoogle Scholar
  31. Hordijk L, Nijkamp P (1977) Dynamic models of spatial autocorrelation. Environ Plann A9:505–519CrossRefGoogle Scholar
  32. Ioannides YM, Overman HG (2003) Zipf’s law for cities: an empirical examination. Reg Sci Urban Econ 33:127– 137CrossRefGoogle Scholar
  33. Johnson PA (2002) A nonparametric analysis of income convergence across the United States. Econ Lett 69:219–223CrossRefGoogle Scholar
  34. Kawagoe M (1999) Regional dynamics in Japan: a reexamination of Barro regressions. J Jpn Int Econ 13:61–72CrossRefGoogle Scholar
  35. Kemeny J, Snell L (1976) Finite Markov chains. Springer, New YorkGoogle Scholar
  36. Krugman P (1996) The Self-organizing economy. Blackwell, CambridgeGoogle Scholar
  37. Lanaspa L, Perdiguero AM, Sanz F (2004) La distribución del tamaño de las ciudades en España, 1900–1999. Revista de Economía Aplicada 34:5–16Google Scholar
  38. Lanaspa L, Pueyo F, Sanz F (2003) The evolution of Spanish urban structure during the twentieth century. Urban Stud 40:567–580CrossRefGoogle Scholar
  39. Le Gallo J (2004) Space-time analysis of GDP disparities among European regions: a Markov Chains approach. Int Reg Sci Rev 27:138–163CrossRefGoogle Scholar
  40. Lopez-Bazo E, Vaya E, Mora AJ, Suriñach J (1999) Regional economic dynamics and convergence in the European Union. Ann Reg Sci 33:343–370CrossRefGoogle Scholar
  41. Magrini S (1999) The evolution of income disparities among the regions of the European Union. Reg Sci Urban Econ 29:257–281CrossRefGoogle Scholar
  42. Mella JM, Chasco C (2006) A spatial econometric analysis of urban growth and territorial dynamics: a case study on Spain. In: Nijkamp P, Reggiani A (eds) Spatial evolution and modeling. Edward Elgar, pp 319–360Google Scholar
  43. Ministerio de Fomento (2000) Atlas Estadístico de las Áreas Urbanas en España, Subdirección General de Urbanismo, MadridGoogle Scholar
  44. Monclús FJ (1997) Planeamiento y crecimiento suburbano en Barcelona: de las extensiones periféricas a la dispersión metropolitana (1897–1997). Coloquio sobre El desarrollo urbano de Montréal y Barcelona en la época contemporánea: estudio comparativo, Universidad de BarcelonaGoogle Scholar
  45. Nitsch V (2005) Zipf zipped. J Urban Econ 57:86–100CrossRefGoogle Scholar
  46. Overman HG, Ioannides YM (2001) Cross-sectional evolution of the US city size distribution. J Urban Econ 49:543– 566CrossRefGoogle Scholar
  47. Pareto V (1897) Cours d’Economie Politique. Rouge et Cie, ParisGoogle Scholar
  48. Quah D (1993) Empirical cross-section dynamics in economic growth. Euro Econ Rev 37:426–434CrossRefGoogle Scholar
  49. Quah D (1996) Empirics for economic growth and convergence. Euro Econ Rev 40:1353–1375CrossRefGoogle Scholar
  50. Quah D (1997) Empirics for growth and distribution: stratification, polarization, and convergence clubs. J Econ Growth 2:27–59CrossRefGoogle Scholar
  51. Rey S (2001) Spatial empirics for economic growth and convergence. Geogr Anal 33:195–214CrossRefGoogle Scholar
  52. Rossi-Hansberg E, Wright M (2004) Urban structure and growth. Mimeo, Stanford University, Economics DepartmentGoogle Scholar
  53. Soo KT (2005) Zipf’s law for cities: a cross-country investigation. J Urban Econ 35:239–263CrossRefGoogle Scholar
  54. Stanback T. Jr (1991) The new suburbanisation: challenge to the central city. Westwiew Press, BoulderGoogle Scholar
  55. Tan B, Yilmaz K (2002) Markov chain test for time dependence and homogeneity: an analytical and empirical evaluation. Euro J Oper Res 137:524–543CrossRefGoogle Scholar
  56. Tuñón de Lara M, Malerbe PC (1982) La caída del rey. De la quiebra de la Restauración a la República (1917–36). Historia 16, vol. XXIIIGoogle Scholar
  57. Tuñón de Lara M, Viñas A (1982) La España de la cruzada. Guerra civil y primer franquismo (1936–1959). Historia 16, vol. XXIVGoogle Scholar
  58. Tuñón de Lara M, Bahamonde A, Toro, J, Arostegui J (1982) La España de los caciques. Del sexenio democrático a la crisis de 1917. Historia 16, vol. XXIIGoogle Scholar
  59. White E, Hewings GJD (1982) Space-time employment modelling: some results using seemingly unrelated regression estimators. J Reg Sci 22:283–302CrossRefGoogle Scholar
  60. Zellner A (1962) An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Assoc 57:348–368CrossRefGoogle Scholar
  61. Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.CRESEUniversité de Franche-ComtéBesancon CedexFrance
  2. 2.Departamento de Economía AplicadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations