Computational Statistics

, Volume 18, Issue 2, pp 185–203

# Multivariate Local Fitting with General Basis Functions

• Jochen Einbeck
Article

## Summary

In this paper we combine the concepts of local smoothing and fitting with basis functions for multivariate predictor variables. We start with arbitrary basis functions and show that the asymptotic variance at interior points is independent of the choice of the basis. Moreover we calculate the asymptotic variance at boundary points. We are not able to compute the asymptotic bias since a Taylor theorem for arbitrary basis functions does not exist. For this reason we focus on basis functions without interactions and derive a Taylor theorem which covers this case. This theorem enables us to calculate the asymptotic bias for interior as well as for boundary points. We demonstrate how advantage can be taken of the idea of local fitting with general basis functions by means of a simulated data set, and also provide a data-driven tool to optimize the basis.

## Key Words

Bias reduction local polynomial fitting multivariate kernel smoothing Taylor expansion

## References

1. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74, 829–836.
2. Cleveland, W. S. and Devlin, S. (1988). Locally weighted regression: An approach to regression analysis by local fitting. J. Amer. Statist. Assoc. 83, 596–610.
3. Einbeck, J. (2001). Local fitting with general basis functions, SFB 386, Discussion Paper No. 256. https://doi.org/www.stat.uni-muenchen.de/∼einbeck/powerpap06.ps.
4. Fahrmeir, L. and Hamerle, A. (1984). Multivariate statistische Verfahren. Berlin / New York: de Gruyter.
5. Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87, 998–1004.
6. Nadaraya, E. A. (1964). On estimating regression. Theory Prob. Appl. 10, 186–190.
7. Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis. New York: Springer.
8. Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22, 1346–1370.
9. Staniswalis, J. G., Messer, K., and Finston, D. R. (1993). Kernel estimators for multivariate regression. Nonparametric Statistics 3, 103–121.
10. Stone, C. J. (1977). Consistent nonparametric regression. Ann. Statist. 5, 595–645.
11. Wand, M. P. (1992). Error analysis for general multivariate kernel estimators. Nonparametric Statistics 2, 1–15.
12. Wand, M. P. and Jones, M. C. (1993). Comparison of smoothing parametrizations in bivariate kernel density estimation. J. Amer. Statist. Assoc. 88, 520–528.
13. Watson, G. S. (1964). Smooth regression analysis. Sankhyā, Series A, 26, 359–372.
14. Yang, L. and Tschering, R. (1999). Multivariate bandwidth selection for local linear regression. J. R. Statist. Soc. B 61, 793–815.