Advertisement

Computational Statistics

, Volume 17, Issue 4, pp 545–564 | Cite as

The Functional Nonparametric Model and Application to Spectrometric Data

  • Frédéric FerratyEmail author
  • Philippe Vieu
Article

Summary

The aim of this paper is to present a nonparametric regression model with scalar response when the explanatory variables are curves. In this context, the crucial problem of dimension reduction is overriden by the use of an implicit fractal dimension hypothesis. For such a functional nonparametric regression model we introduce and study both practical and theoretical aspects of some kernel type estimator. After a simulation study, it is shown how this procedure is well adapted to some spectrometric data set. Asymptotic results are described and in conclusion it turns out that this method combines advantages of easy implementation and good mathematical properties.

Keywords

Dimension Reduction Functional Data Nonparametric Estimate Regression Model Spectrometric Data 

Notes

Acknowledgment

The authors wish to thank Professor D. Tjøstheim both for interesting discussions and careful proofreading of this manuscript, Professor Holik for helpful comments about chemometrical aspects of our study and Professor D. Stephenson for pertinent remarks. The encouragements of Hervé Cardot and Pascal Sarda, and more generally those of all the participants of the working group STAPH on Statistique Fonctionnelle of our department, are gratefully acknowledged. This paper has also been greatly improved by the helpful comments of the Editor, the Associate Editor and the referees.

References

  1. Becker, R., J. Chambers & Wilks, A. (1988), The new S language, a programming environment for data analysis and graphic. Wadsworth and Brooks/Cole.Google Scholar
  2. Besse, P., Cardot, H. & Ferraty, F. (1997), Simultaneous non-parametric regressions of unbalanced longitudinal data. Computational Statist and Data Analysis, 24, 225–270.MathSciNetCrossRefGoogle Scholar
  3. Besse, P., Cardot, H. & Stephenson, D. (1999), Autoregressive forecasting of some functional climatic variations. Scand. J. of Statist., in print.Google Scholar
  4. Boularan, J., Ferré, L. & Vieu, P. (1995), A nonparametric model for unbalanced longitudinal data with application to geophysical data. Computational Statist., 10, 285–298.MathSciNetzbMATHGoogle Scholar
  5. Brown, P. J., Fearn, T. & Vannucci, M. (2001), Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem. J. Amer. Statist. Assoc., 96, 398–408.MathSciNetCrossRefGoogle Scholar
  6. Cardot, H., Ferraty, F. & Sarda, P. (1999), Functional linear model. Statist. & Proba. Lett., 45, 11–22.MathSciNetCrossRefGoogle Scholar
  7. de Boor, C. (1978), A practical Guide to Splines. Springer, New-York.CrossRefGoogle Scholar
  8. Denham, M. C. & Brown, P. J. (1993), Calibration with Many Variables. Appl. Statist., 42, 515–528.CrossRefGoogle Scholar
  9. Ferraty, F. & Vieu, P. (2000), Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés. C. R. Acad. Sci. Paris, 323, 403–406.zbMATHGoogle Scholar
  10. Ferraty, F. & Vieu, P. (2001), Statistique Fonctionnelle: Modèles de Régression pour Variables Aléatoires Uni, Multi et Infiniment Dimensionnées. Technical Report, Laboratoire de Statistique et Probabilités, Toulouse, 2001–03.Google Scholar
  11. Frank, I.E. & Friedman, J.H. (1993), A statistical view of some chemometrics regression tools. Technometrics, 35, 109–148.CrossRefGoogle Scholar
  12. Goutis, G. & Fearn, T. (1996), Partial Least Squares Regression on Smooth Factors. J. Amer. Statist. Assoc., 91, 627–632.MathSciNetCrossRefGoogle Scholar
  13. Härdle, W. (1990), Applied Nonparametric Regression. Cambridge Univ. Press, UK.CrossRefGoogle Scholar
  14. Hoeffding, W. (1963), Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58, 15–30.MathSciNetCrossRefGoogle Scholar
  15. Kneip, A. & Gasser, T. (1992), Statistical tools to analyse data representing a sample of curves. Ann. Statist., 20, 1266–1305.MathSciNetCrossRefGoogle Scholar
  16. Leurgans, S.E., Moyeed, R.A. & Silverman, B.W. (1993), Canonical correlation analysis when the data are curves. J. R. Statist. Soc. B, 55, 725–740.MathSciNetzbMATHGoogle Scholar
  17. Mack, Y.P. & Silverman, B.W. (1982), Weak and strong uniform consistency of kernel regression estimates. Zeit. W.u.v.G., 61, 405–415.MathSciNetzbMATHGoogle Scholar
  18. Martens, H. & Naes, T. (1989), Multivariate Calibration, New-York: John Wiley.zbMATHGoogle Scholar
  19. Nunez-Anton, V., Rodriguez-Poo, J. & Vieu, P. (1999), Longitudinal data with non stationnary errors: a three-stage nonparametric approach. TEST, 8, 201–231.MathSciNetCrossRefGoogle Scholar
  20. Ramsay, J. & Dalzell, C. (1991), Some tools for functional data analysis. J. R. Statist. Soc. B, 53, 539–572.MathSciNetzbMATHGoogle Scholar
  21. Ramsay, J. & Li, X. (1996), Curve registration. J. R. Statist. Soc. B, 60, 351–363.MathSciNetCrossRefGoogle Scholar
  22. Ramsay, J. & Silverman, B. (1997), Functional Data Analysis. Springer-Verlag.Google Scholar
  23. Rice, J. & Silverman, B. (1991), Estimating the mean and the covariance structure nonparametrically when the data are curves. J. R. Statist. Soc. B, 53, 233–243.MathSciNetzbMATHGoogle Scholar
  24. Schumaker, L. (1981), Spline Functions: Basic Theory. Wiley-Interscience.Google Scholar
  25. Stone, C. (1982), Optimal global rates of convergence for nonparametric estimators. Ann. Statist., 10, 1040–1053.MathSciNetCrossRefGoogle Scholar
  26. Vieu, P. (1991), Nonparametric regression: local optimal bandwidth choice. J. R. Statist. Soc. B, 53, 453–474.zbMATHGoogle Scholar
  27. Wand, M.P. & Jones, M.C. (1995), Kernel Smoothing, Chapman & Hall, London.CrossRefGoogle Scholar

Copyright information

© Physica-Verlag 2002

Authors and Affiliations

  1. 1.Laboratoire de Statistique et Probabilités U.M.R. C5583Université Paul SabatierToulouse cedexFrance
  2. 2.Équipe GRIMMUniversité Toulouse Le MirailToulouse CedexFrance

Personalised recommendations