Advertisement

Computational Statistics

, Volume 16, Issue 1, pp 195–207 | Cite as

Presentation of smoothers: the family approach

  • J. S. Marron
  • S. S. Chung
Article

Summary

The product of most statistical smoothing methods is a single curve estimate. A drawback of such methods is that what is learned varies with choice of the smoothing parameter. This paper proposes simultaneous display of all important features, through presentation of a family of smooths. Some suggestions are given as to how this should be done.

Keywords

bandwidth density estimation family approach kernel smoothing nonparametric regression 

Notes

3 Acknowledgments

This research was partially supported by NSF Grant DMS-9203135, and by the Division of Mathematics and Statistics, CSIRO.

References

  1. [1]
    Cao, R., Cuevas, A. and González-Manteiga, W. (1994). A comparative study of several smoothing methods in density estimation, Computational Statstics and Data Analysis, 17, 153–176.CrossRefGoogle Scholar
  2. [2]
    Chaudhuri, P. and Marron, J. S. (1998) Scale space view of curve estimation, unpublished manuscript.Google Scholar
  3. [3]
    Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structure in curves, to appear in Journal of the American Statistical Association.Google Scholar
  4. [5]
    Chu, C. K. and Marron, J. S. (1991) Choosing a kernel regression estimator, Statistical Science, 6, 404–436.MathSciNetCrossRefGoogle Scholar
  5. [6]
    Diggle, P. J. (1985) A kernel method for smoothing point process data, Applied Statististics, 34, 138–147.CrossRefGoogle Scholar
  6. [7]
    Eubank, R. L. (1988) Spline smoothing and Nonparametric Regression, Dekker — New York.zbMATHGoogle Scholar
  7. [8]
    Fan, J. and Gijbels, I. (1996) Local polynomial modelling and its applications, Chapman and Hall — London.zbMATHGoogle Scholar
  8. [9]
    Fan, J. and Marron, J. S. (1994) Fast implementations of nonparametric curve estimators, Journal of Computational and Graphical Statistics, 3, 35–56.Google Scholar
  9. [10]
    Green, P. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models, Chapman and Hall — London.CrossRefGoogle Scholar
  10. [11]
    Härdle, W. (1990) Applied Nonparametric Regression, Cambridge University Press — Cambridge.CrossRefGoogle Scholar
  11. [12]
    Izenman, I. and Sommer, C. J. (1988) Philatelic mixtures and multimodal densities, Journal of the American Statistical Association, 83, 941–953.CrossRefGoogle Scholar
  12. [13]
    Jones, M. C., Marron, J. S. and Sheather, S. J. (1996a) A brief survey of modern bandwidth selection methods, Journal of the American Statistical Association, 91, 401–407.MathSciNetCrossRefGoogle Scholar
  13. [14]
    Jones, M. C., Marron, J. S. and Sheather, S. J. (1996b) Progress in data-based bandwidth selection for kernel density estimation, Computational Statistics, 11, 337–381.MathSciNetzbMATHGoogle Scholar
  14. [15]
    Kooperberg, C. and Stone, C. J. (1991) A study of log spline density estimation, Computational Statstics and Data Analysis, 12, 327–347.CrossRefGoogle Scholar
  15. [16]
    Marron, J. S. and Wand, M. P. (1992) Exact mean integrated squared error, Annals of Statistics, 20, 712–736.MathSciNetCrossRefGoogle Scholar
  16. [17]
    Marron, J. S. and Udina, F. (1995) Interactive local bandwidth choice, Economics Working Paper 109, Universitat Pompeu Fabra.Google Scholar
  17. [18]
    Minnotte, M. C. and Scott, D. W. (1993) The mode tree: a tool for visualization of nonparametric density features, Journal of Computational and Graphical Statistics, 2, 51–86.Google Scholar
  18. [19]
    Müller, H. G. (1988) Nonparametric Analysis of Longitudinal Data, Springer Lecture Notes in Statistics 46, Springer, New York.CrossRefGoogle Scholar
  19. [20]
    Park, B. U. and Marron, J. S. (1990) Comparison of data-driven bandwidth selectors, Journal of the American Statistical Association, 85, 66–72.CrossRefGoogle Scholar
  20. [21]
    Park, B. U. and Turlach, B. A. (1992) Practical performance of several data driven bandwidth selectors (with discussion), Computational Statistics, 7, 251–285.zbMATHGoogle Scholar
  21. [22]
    Roeder, K. (1990) Density estimation with confidence sets exemplified by superclusters and voids in the galaxies, Journal of the American Statistical Association, 85, 617–624.CrossRefGoogle Scholar
  22. [23]
    Ruppert, D., Sheather, S. J. and Wand, M. P. (1995) An effective bandwidth selector for local least squares regression, Journal of the American Statistical Association, 90, 1257–1270.MathSciNetCrossRefGoogle Scholar
  23. [24]
    Schmitz, H. P. and Marron, J. S. (1992) Simultaneous estimation of several size distributions of income, Econometric Theory, 8, 476–488.CrossRefGoogle Scholar
  24. [25]
    Scott, D. W. (1992) Multivariate density estimation: theory, practice and visualization, Wiley — New York.CrossRefGoogle Scholar
  25. [26]
    Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel density estimation, Journal of the Royal Statistical Society, Series B, 53, 683–690.MathSciNetzbMATHGoogle Scholar
  26. [27]
    Silverman, B. W. (1978) Choosing the window width when estimating a density, Biometrika, 65, 1–11.MathSciNetCrossRefGoogle Scholar
  27. [28]
    Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.CrossRefGoogle Scholar
  28. [29]
    Terrell, G. R. (1990). The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470–477.MathSciNetCrossRefGoogle Scholar
  29. [30]
    Ullah, A. (1985) Specification analysis of econometric models, Journal of Quantitative Economics, 2, 187–209.Google Scholar
  30. [31]
    Wahba, G. (1990) Spline Models for Observational Data, SIAM — Philadelphia.CrossRefGoogle Scholar
  31. [32]
    Wand, M. P. and Jones, M. C. (1995) Kernel Smoothing, Chapman and Hall London.CrossRefGoogle Scholar
  32. [33]
    Wand, M. P., Marron, J. S. and Ruppert, D. R. (1991) Transformations in density estimation, Journal of the American Statistical Association, 86, 343–361.MathSciNetCrossRefGoogle Scholar
  33. [34]
    Weisberg, S. (1980) Applied Linear Regression, Wiley, New York.zbMATHGoogle Scholar

Copyright information

© Physica-Verlag 2001

Authors and Affiliations

  • J. S. Marron
    • 1
  • S. S. Chung
    • 2
  1. 1.Department of StatisticsUniversity of North CarolinaChapel HillUSA
  2. 2.Department of StatisticsChonbuk UniversityChonjuKorea

Personalised recommendations