Adaptive proposal distribution for random walk Metropolis algorithm

Summary

The choice of a suitable MCMC method and further the choice of a proposal distribution is known to be crucial for the convergence of the Markov chain. However, in many cases the choice of an effective proposal distribution is difficult. As a remedy we suggest a method called Adaptive Proposal (AP). Although the stationary distribution of the AP algorithm is slightly biased, it appears to provide an efficient tool for, e.g., reasonably low dimensional problems, as typically encountered in non-linear regression problems in natural sciences. As a realistic example we include a successful application of the AP algorithm in parameter estimation for the satellite instrument ‘GOMOS’. In this paper we also present systematic performance criteria for comparing Adaptive Proposal algorithm with more traditional Metropolis algorithms.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Gelfand, A. E. & Smith, A. F. M. (1990), ‘Sampling-based approaches to calculate marginal densities’, J. Am. Stat. Ass. 85, 853–409.

    Google Scholar 

  2. Gelman, A. G., Roberts, G. O. & Gilks, W. R. (1996), Efficient Metropolis jumping rules, in J. M. Bernardo, J. O. Berger, A. F. David & A. F. M. Smith, eds, ‘Bayesian Statistics V’, Oxford University press, Oxford, pp. 599–608.

    Google Scholar 

  3. Gilks, W., Best, N. & Tan, K. (1995), ‘Adaptive rejection Metropolis sampling’, Applied Statistics 44, 455–472.

    Article  Google Scholar 

  4. Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. (1995), Introducing Markov chain Monte Carlo, in W. R. Gilks, S. Richardson & D. J. Spiegelhalter, eds, ‘Markov Chain Monte Carlo in Practice’, Chapman & Hall, pp. 1–19.

  5. Gilks, W. R., Roberts, G. O. & George, E. I. (1994), ‘Adaptive direction sampling’, Statistical Science 43, 179–189.

    Google Scholar 

  6. Gilks, W. & Roberts, G. (1995), Stategies for improving MCMC, in W. R. Gilks, S. Richardson & D. J. Spiegelhalter, eds, ‘Markov Chain Monte Carlo in Practice’, Chapman & Hall, pp. 75–88.

  7. Gilks, W., Roberts, G. & Sahu, S. (1998), ‘Adaptive Markov chain Monte Carlo through regeneration’, J. Amer. Statist. Assoc. To appear.

  8. Gilks, W. & Wild, P. (1992), ‘Adaptive rejection sampling for Gibbs sampling’, Applied Statistics 41, 337–348.

    Article  Google Scholar 

  9. Haario, H., Saksman, E. & Tamminen, J. (1998a), Adaptive proposal distribution for random walk Metropolis algorithm. Reports of the Department of Mathematics, University of Helsinki, Preprint 176.

  10. Haario, H., Saksman, E. & Tamminen, J. (1998b), An Adaptive Metropolis algorithm. Reports of the Department of Mathematics, University of Helsinki, Preprint 187.

  11. Hastings, W. (1970), ‘Monte Carlo sampling methods using Markov chains and their applications’, Biometrica 57, 97–109.

    MathSciNet  Article  Google Scholar 

  12. Kyrölä, E., Sihvola, E., Kotivuori, Y., Tikka, M., Tuomi, T. & Haario, H. (1993), ‘Inverse Theory for Occultation Measurements, 1. Spectral Inversion’, J. Geophys. Res. 98, 7367–7381.

    Article  Google Scholar 

  13. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953), ‘Equations of state calculations by fast computing machine’, J. Chem. Phys. 21, 1087–1091.

    Article  Google Scholar 

  14. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992), Numerical Recipes in FORTRAN, The art of scientific computing, Clasendon Press, Oxford.

    Google Scholar 

  15. Roberts, G. O., Gelman, A. & Gilks, W. R. (1994), Weak convergence and optimal scaling of random walk metropolis algorithms. Preprint. URL: https://doi.org/www.stats.bris.ac.uk/MCMC/

  16. Sahu, S. K. & Zhigljavsky, A. A. (1998a), Self regenerative Markov chain Monte Carlo. Preprint. URL: https://doi.org/www.stats.bris.ac.uk/MCMC/

  17. Sahu, S. K. & Zhigljavsky, A. A. (1998b), Adaptation for self regenerative MCMC. Preprint. URL: https://doi.org/www.stats.bris.ac.uk/MCMC/

Download references

Acknowledgments

The second author (E.S) has been supported by the Academy of Finland, Project 32837. We thank Elja Arjas, Esa Nummelin and Antti Penttinen for useful discussions on the topics of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heikki Haario.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haario, H., Saksman, E. & Tamminen, J. Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics 14, 375–395 (1999). https://doi.org/10.1007/s001800050022

Download citation

Keywords

  • MCMC
  • Adaptive MCMC
  • Metropolis—Hastings algorithm
  • convergence