Median constrained bucket order rank aggregation

  • Antonio D’AmbrosioEmail author
  • Carmela Iorio
  • Michele Staiano
  • Roberta Siciliano
Original Paper


The rank aggregation problem can be summarized as the problem of aggregating individual preferences expressed by a set of judges to obtain a ranking that represents the best synthesis of their choices. Several approaches for handling this problem have been proposed and are generally linked with either axiomatic frameworks or alternative strategies. In this paper, we present a new definition of median ranking and frame it within the Kemeny’s axiomatic framework. Moreover, we show the usefulness of our approach in a practical case about triage prioritization.


Tied rankings Median ranking Kemeny distance Triage prioritization 



The authors would like to thank Prof. Dr. Giuseppe Zollo and Dr. Lorella Cannavacciuolo of the University of Naples Federico II for kindly providing us the triage dataset. The authors would also like to thank both the Editor and the two anonymous reviewers, whose comments highly contributed to improving the quality of the manuscript.


  1. Aledo JA, Gámez JA, Molina D (2013) Tackling the rank aggregation problem with evolutionary algorithms. Appl Math Comput 222:632–644MathSciNetzbMATHGoogle Scholar
  2. Aledo JA, Gámez JA, Rosete A (2017a) Partial evaluation in rank aggregation problems. Comput Oper Res 78:299–304MathSciNetzbMATHCrossRefGoogle Scholar
  3. Aledo JA, Gámez JA, Rosete A (2017b) Utopia in the solution of the bucket order problem. Decis Support Syst 97:69–80CrossRefGoogle Scholar
  4. Aledo JA, Gámez JA, Rosete A (2018) Approaching rank aggregation problems by using evolution strategies: the case of the optimal bucket order problem. Eur J Oper Res 270(3):982–998MathSciNetzbMATHCrossRefGoogle Scholar
  5. Amodio S, D’Ambrosio A, Siciliano R (2016) Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach. Eur J Oper Res 249(2):667–676MathSciNetzbMATHCrossRefGoogle Scholar
  6. Asfaw D, Vitelli V, Sørensen Ø, Arjas E, Frigessi A (2017) Time-varying rankings with the Bayesian Mallows model. Statistics 6(1):14–30MathSciNetCrossRefGoogle Scholar
  7. Badal PS, Das A (2018) Efficient algorithms using subiterative convergence for Kemeny ranking problem. Comput Oper Res 98:198–210MathSciNetzbMATHCrossRefGoogle Scholar
  8. Biernacki C, Jacques J (2013) A generative model for rank data based on insertion sort algorithm. Comput Stat Data Anal 58:162–176MathSciNetzbMATHCrossRefGoogle Scholar
  9. Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39(3/4):324–345MathSciNetzbMATHCrossRefGoogle Scholar
  10. Brentari E, Dancelli L, Manisera M (2016) Clustering ranking data in market segmentation: a case study on the Italian McDonald’s customers’ preferences. J Appl Stat 43(11):1959–1976MathSciNetCrossRefGoogle Scholar
  11. Brusco MJ, Stahl S (2006) Branch-and-bound applications in combinatorial data analysis. Springer, New YorkzbMATHGoogle Scholar
  12. Busing FM (2006) Avoiding degeneracy in metric unfolding by penalizing the intercept. Br J Math Stat Psychol 59(2):419–427MathSciNetCrossRefGoogle Scholar
  13. Busing FM, Groenen PJ, Heiser WJ (2005) Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika 70(1):71–98MathSciNetzbMATHCrossRefGoogle Scholar
  14. Busse LM, Orbanz P, Buhmann JM (2007) Cluster analysis of heterogeneous rank data. In: Proceedings of the 24th international conference on machine learning. ACM, New York, pp 113–120Google Scholar
  15. Cohen A, Mallows C (1980) Analysis of ranking data. Tech. rep., AT&T Bell Laboratories Memorandum, Murray HillGoogle Scholar
  16. Cook WD (2006) Distance-based and ad hoc consensus models in ordinal preference ranking. Eur J Oper Res 172(2):369–385MathSciNetzbMATHCrossRefGoogle Scholar
  17. Cook WD, Kress M, Seiford LM (1997) A general framework for distance-based consensus in ordinal ranking models. Eur J Oper Res 96(2):392–397zbMATHCrossRefGoogle Scholar
  18. Corain L, Salmaso L (2007) A non-parametric method for defining a global preference ranking of industrial products. J Appl Stat 34(2):203–216MathSciNetzbMATHCrossRefGoogle Scholar
  19. D’Ambrosio A (2008) Tree based methods for data editing and preference rankings. PhD thesis, Doctoral dissertation, Università degli Studi di Napoli Federico II,
  20. D’Ambrosio A, Heiser WJ (2016) A recursive partitioning method for the prediction of preference rankings based upon Kemeny distances. Psychometrika 81(3):774–794MathSciNetzbMATHCrossRefGoogle Scholar
  21. D’Ambrosio A, Amodio S, Iorio C (2015) Two algorithms for finding optimal solutions of the Kemeny rank aggregation problem for full rankings. Electron J Appl Stat Anal 8(2):198–213MathSciNetGoogle Scholar
  22. D’Ambrosio A, Amodio S, Mazzeo G (2016) ConsRank, compute the median ranking(s) according to the Kemeny’s axiomatic approach. R package version 2.0.0.
  23. D’Ambrosio A, Mazzeo G, Iorio C, Siciliano R (2017) A differential evolution algorithm for finding the median ranking under the kemeny axiomatic approach. Comput Oper Res 82:126–138MathSciNetzbMATHCrossRefGoogle Scholar
  24. Deng K, Han S, Li KJ, Liu JS (2014) Bayesian aggregation of order-based rank data. J Am Stat Assoc 109(507):1023–1039MathSciNetzbMATHCrossRefGoogle Scholar
  25. Desarkar MS, Sarkar S, Mitra P (2016) Preference relations based unsupervised rank aggregation for metasearch. Expert Syst Appl 49:86–98CrossRefGoogle Scholar
  26. Dittrich R, Katzenbeisser W, Reisinger H (2000) The analysis of rank ordered preference data based on Bradley–Terry type models. OR Spectr 22(1):117–134zbMATHCrossRefGoogle Scholar
  27. Dopazo E, Martínez-Céspedes ML (2017) Rank aggregation methods dealing with ordinal uncertain preferences. Expert Syst Appl 78:103–109CrossRefGoogle Scholar
  28. Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings of the 10th international conference on World Wide Web, ACM, New York, NY, pp 613–622Google Scholar
  29. Emond EJ, Mason DW (2000) A new technique for high level decision support. Department of National Defence Canada, Operational Research Division, Directorate of Operational Research (Corporate, Air & Maritime).
  30. Emond EJ, Mason DW (2002) A new rank correlation coefficient with application to the consensus ranking problem. J Multi-Criteria Decis Anal 11(1):17–28zbMATHCrossRefGoogle Scholar
  31. Feigin PD, Alvo M (1986) Intergroup diversity and concordance for ranking data: an approach via metrics for permutations. Ann Stat 4(2):691–707MathSciNetzbMATHCrossRefGoogle Scholar
  32. Fields EB, Okudan GE, Ashour OM (2013) Rank aggregation methods comparison: a case for triage prioritization. Expert Syst Appl 40(4):1305–1311CrossRefGoogle Scholar
  33. Fienberg SE, Larntz K (1976) Log linear representation for paired and multiple comparisons models. Biometrika 63(2):245–254MathSciNetzbMATHCrossRefGoogle Scholar
  34. Fürnkranz J, Hüllermeier E (2010) Preference learning: an introduction. Springer, BerlinzbMATHGoogle Scholar
  35. Gionis A, Mannila H, Puolamäki K, Ukkonen A (2006) Algorithms for discovering bucket orders from data. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 561–566Google Scholar
  36. Hall P, Schimek MG (2012) Moderate-deviation-based inference for random degeneration in paired rank lists. J Am Stat Assoc 107(498):661–672MathSciNetzbMATHCrossRefGoogle Scholar
  37. Heiser WJ, D’Ambrosio A (2013) Clustering and prediction of rankings within a Kemeny distance framework. In: Lausen B, Van den Poel D, Ultsch A (eds) Algorithms from and for nature and life. Springer, Cham, pp 19–31CrossRefGoogle Scholar
  38. Kemeny JG, Snell JL (1962) Mathematical models in the social sciences. Blaisdell Publishing Company, New YorkzbMATHGoogle Scholar
  39. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93zbMATHCrossRefGoogle Scholar
  40. Kenkre S, Khan A, Pandit V (2011) On discovering bucket orders from preference data. In: Proceedings of the 2011 SIAM international conference on data mining, SIAM, pp 872–883Google Scholar
  41. Lee PH, Yu PL (2010) Distance-based tree models for ranking data. Comput Stat Data Anal 54(6):1672–1682MathSciNetzbMATHCrossRefGoogle Scholar
  42. Lin S (2010) Space oriented rank-based data integration. Stat Appl Genet Mol Biol 9(1):1544–6115MathSciNetCrossRefGoogle Scholar
  43. Lin S, Ding J (2009) Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies. Biometrics 65(1):9–18MathSciNetzbMATHCrossRefGoogle Scholar
  44. Mallows CL (1957) Non-null ranking models. I. Biometrika 44(1/2):114–130MathSciNetzbMATHCrossRefGoogle Scholar
  45. Marden JI (1996) Analyzing and modeling rank data. CRC Press, LondonzbMATHGoogle Scholar
  46. Mattei N, Walsh T (2013) Preflib: a library of preference data In: Proceedings of the 3rd international conference on algorithmic decision theory (ADT 2013), lecture notes in artificial intelligence. Springer, Berlin, pp 259–270
  47. Meila M, Phadnis K, Patterson A, Bilmes J (2007) Consensus ranking under the exponential model. In: Proceedings of the twenty-third conference annual conference on uncertainty in artificial intelligence (UAI-07). AUAI Press, Corvallis, pp 285–294Google Scholar
  48. Murphy TB, Martin D (2003) Mixtures of distance-based models for ranking data. Comput Stat Data Anal 41(3):645–655MathSciNetzbMATHCrossRefGoogle Scholar
  49. Onwubolu G, Davendra D (2009) Differential evolution: a handbook for global permutation-based combinatorial optimization. Springer, BerlinzbMATHCrossRefGoogle Scholar
  50. Plaia A, Sciandra M (2017) Weighted distance-based trees for ranking data. Adv Data Anal Classif.
  51. Sampath S, Verducci JS (2013) Detecting the end of agreement between two long ranked lists. Stat Anal Data Min ASA Data Sci J 6(6):458–471MathSciNetzbMATHCrossRefGoogle Scholar
  52. Sciandra M, Plaia A, Capursi V (2017) Classification trees for multivariate ordinal response: an application to student evaluation teaching. Qual Quant 51(2):641–655CrossRefGoogle Scholar
  53. Storn R, Price K (1995) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, ICSI Berkeley.
  54. Švendová V, Schimek MG (2017) A novel method for estimating the common signals for consensus across multiple ranked lists. Comput Stat Data Anal 115:122–135MathSciNetzbMATHCrossRefGoogle Scholar
  55. Telcs A, Kosztyán ZT, Török Á (2016) Unbiased one-dimensional university ranking-application-based preference ordering. J Appl Stat 43(1):212–228MathSciNetCrossRefGoogle Scholar
  56. Thompson GL (1993) Generalized permutation polytopes and exploratory graphical methods for ranked data. Ann Stat 21(3):1401–1430MathSciNetzbMATHCrossRefGoogle Scholar
  57. Ukkonen A, Puolamäki K, Gionis A, Mannila H (2009) A randomized approximation algorithm for computing bucket orders. Inf Process Lett 109(7):356–359MathSciNetzbMATHCrossRefGoogle Scholar
  58. Yu PL, Lee PH, Wan W (2013) Factor analysis for paired ranked data with application on parent–child value orientation preference data. Comput Stat 28(5):1915–1945MathSciNetzbMATHCrossRefGoogle Scholar
  59. Yu PL, Lee PH, Cheung S, Lau EY, Mok DS, Hui HC (2016) Logit tree models for discrete choice data with application to advice-seeking preferences among chinese christians. Comput Stat 31(2):799–827MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Economics and StatisticsUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Industrial EngineeringUniversity of Naples Federico IINaplesItaly

Personalised recommendations