Skip to main content
Log in

Permutation based testing on covariance separability

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Separability is an attractive feature of covariance matrices or matrix variate data, which can improve and simplify many multivariate procedures. Due to its importance, testing separability has attracted much attention in the past. The procedures in the literature are of two types, likelihood ratio test (LRT) and Rao’s score test (RST). Both are based on the normality assumption or the large-sample asymptotic properties of the test statistics. In this paper, we develop a new approach that is very different from existing ones. We propose to reformulate the null hypothesis (the separability of a covariance matrix of interest) into many sub-hypotheses (the separability of the sub-matrices of the covariance matrix), which are testable using a permutation based procedure. We then combine the testing results of sub-hypotheses using the Bonferroni and two-stage additive procedures. Our permutation based procedures are inherently distribution free; thus it is robust to non-normality of the data. In addition, unlike the LRT, they are applicable to situations when the sample size is smaller than the number of unknown parameters in the covariance matrix. Our numerical study and data examples show the advantages of our procedures over the existing LRT and RST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Allen GI, Tibshirani R (2012) Inference with transposable data: modelling the effects of row and column correlations. J R Stat Soc Ser B Stat Methodol 74(4):721–743

    Article  MathSciNet  Google Scholar 

  • Bertoluzzo F, Pesarin F, Salmaso L (2013) On multi-sided permutation tests. Commun Stat Simul Comput 42(6):1380–1390

    Article  MATH  Google Scholar 

  • Dawid AP (1981) Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68(1):265–274

    Article  MathSciNet  MATH  Google Scholar 

  • Dutilleul P (1999) The mle algorithm for the matrix normal distribution. J Stat Comput Simul 64(2):105–123

    Article  MATH  Google Scholar 

  • Filipiak K, Klein D, Roy A (2016) Score test for a separable covariance structure with the first component as compound symmetric correlation matrix. J Multivar Anal 150:105–124

    Article  MathSciNet  MATH  Google Scholar 

  • Filipiak K, Klein D, Roy A (2017) A comparison of likelihood ratio tests and Rao’s score test for three separable covariance matrix structures. Biom J 59:192–215

    Article  MathSciNet  MATH  Google Scholar 

  • Finos L, Salmaso L (2005) A new nonparametric approach for multiplicity control: optimal subset procedures. Comput Stat 20(4):643–654

    Article  MathSciNet  MATH  Google Scholar 

  • Fuentes M (2006) Testing for separability of spatial-temporal covariance functions. J Stat Plan Inference 136(2):447–466

    Article  MathSciNet  MATH  Google Scholar 

  • Glanz H, Carvalho L (2013) An expectation-maximization algorithm for the matrix normal distribution. arXiv preprint arXiv:1309.6609

  • Gupta AK, Nagar DK (1999) Matrix variate distribution. Chapman Hall/CRC, New York

    MATH  Google Scholar 

  • Henze N, Zirkler B (1990) A class of invariant consistent tests for multivariate normality. Commun Stat Theory Methods 19(10):3595–3617

    Article  MathSciNet  MATH  Google Scholar 

  • Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2017) Package “coin”. Conditional inference procedures in a permutation test framework. ver. 1.2-2. 2017. https://cran.r-project.org/web/packages/coin/index.html. Accessed 02 July 2018

  • Klingenberg B, Solari A, Salmaso L, Pesarin F (2009) Testing marginal homogeneity against stochastic order in multivariate ordinal data. Biometrics 65(2):452–462

    Article  MathSciNet  MATH  Google Scholar 

  • Korkmaz S, Goksuluk D, Zararsiz D (2014) MVN: an R package for assessing multivariate normality. R J 6(2):151–162

    Article  Google Scholar 

  • Lee SJ, Lee S, Lim J, Ahn SJ, Kim TW (2007) Cluster analysis of tooth size in subjects with normal occlusion. Am J Orthod Dentofac Orthop 132(6):796–800

    Article  Google Scholar 

  • Lee SH, Bachman AH, Yu D, Lim J, Ardekani BA (2016) Predicting progression from mild cognitive impairment to Alzheimers disease using longitudinal callosal atrophy. Alzheimers Dement Diagn Assess Dis Monit 2:68–74

    Google Scholar 

  • Li B, Genton MG, Sherman M (2007) A nonparametric assessment of properties of space–time covariance functions. J Am Stat Assoc 102(478):736–744

    Article  MathSciNet  MATH  Google Scholar 

  • Li E, Lim J, Lee S-J (2010) Likelihood ratio test for correlated multivariate samples. J Multivar Anal 101(3):541–554

    Article  MathSciNet  MATH  Google Scholar 

  • Li E, Lim J, Kim K, Lee S-J (2012) Distribution-free tests of mean vectors and covariance matrices for multivariate paired data. Metrika 75(6):833–854

    Article  MathSciNet  MATH  Google Scholar 

  • Lu N, Zimmerman DL (2005) The likelihood ratio test for a separable covariance matrix. Stat Probab Lett 73(4):449–457

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia KV (1970) Measures of multivariate skewness and kurtosis with applications. Biometrika 57(3):519–530

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell MW, Genton MG, Gumpertz ML (2006) A likelihood ratio test for separability of covariances. J Multivar Anal 97(5):1025–1043

    Article  MathSciNet  MATH  Google Scholar 

  • Pesarin F, Salmaso L (2010) Permutation tests for complex data. Wiley, New York

    Book  MATH  Google Scholar 

  • Roy A, Leiva R (2008) Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements. Stat Probab Lett 78(13):1971–1980

    Article  MathSciNet  MATH  Google Scholar 

  • Roy A, Leiva R (2011) Estimating and testing a structured covariance matrix for three-level multivariate data. Commun Stat Theory Methods 40(11):1945–1963

    Article  MathSciNet  MATH  Google Scholar 

  • Royston P (1983) Some techniques for assessing multivariate normality based on the Shapiro–Wilk W. Appl Stat 32(2):121–133

    Article  MATH  Google Scholar 

  • Royston P (1992) Approximating the Shapiro–Wilk W test for non-normality. Stat Comput 2(3):117–119

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1964) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  MathSciNet  MATH  Google Scholar 

  • Sheng J, Qiu P (2007) p-Value calculation for multi-stage additive tests. J Stat Comput Simul 77(12):1057–1064

    Article  MathSciNet  MATH  Google Scholar 

  • Strasser H, Weber C (1999) On the asymptotic theory of permutation statistics. Math Methods Stat 8(2):220–250

    MathSciNet  MATH  Google Scholar 

  • Tan KM, Witten D (2014) Sparse biclustering of transposable data. J Comput Gr Stat 23(4):985–1008

    Article  MathSciNet  Google Scholar 

  • Viroli C (2010) Finite mixtures of matrix normal distributions for classifying three-way data. Stat Comput 21(4):511–522

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Stokes L, Lim J, Chen M (2006) Concomitant of multivariate order statistics with application to judgment post-stratification. J Am Stat Assoc 101:1693–1704

    Article  MATH  Google Scholar 

  • Wang H, West M (2009) Bayesian analysis of matrix normal graphical models. Biometrika 96(4):821–834

    Article  MathSciNet  MATH  Google Scholar 

  • Yin J, Li H (2012) Model selection and estimation in the matrix normal graphical model. J Multivar Anal 107:119–140

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the Associate Editor and two anonymous reviewers for their many helpful comments. The R-package “NPCovSepTest” of the proposed procedure is online available from https://sites.google.com/view/seongohpark/software. J. Lim’s research is supported by National Research Foundation of Korea (Nos. NRF-2017R1A2B2012264; MIST-2011-0030810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Lim, J., Wang, X. et al. Permutation based testing on covariance separability. Comput Stat 34, 865–883 (2019). https://doi.org/10.1007/s00180-018-0839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0839-2

Keywords

Navigation