Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula

Abstract

Many existing latent failure time models for competing risks do not provide closed form expressions of sub-distribution functions. This paper suggests a generalized FGM copula models with the Burr III failure time distribution such that the sub-distribution functions have closed form expressions. Under the suggested model, we develop a likelihood-based inference method along with its computational tools and asymptotic theory. Based on the expressions of the sub-distribution functions, we propose goodness-of-fit tests. Simulations are conducted to examine the performance of the proposed methods. A real data from the reliability analysis of the radio transmitter-receivers are analyzed to illustrate the proposed methods. The computational programs are made available in the R package GFGM.copula.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amini M, Jabbari H, Mohtashami Borzadaran GR (2011) Aspects of dependence in generalized Farlie–Gumbel–Morgenstern distributions. Commun Stat Simul Comput 40(8):1192–1205

    MathSciNet  Article  MATH  Google Scholar 

  2. Bairamov I, Bayramoglu K (2013) From the Huang–Kotz FGM distribution to Baker’s bivariate distribution. J Multivar Anal 113:106–115

    MathSciNet  Article  MATH  Google Scholar 

  3. Bairamov I, Kotz S (2002) Dependence structure and symmetry of Huang–Kotz FGM distributions and their extensions. Metrika 56(1):55–72

    MathSciNet  Article  MATH  Google Scholar 

  4. Bakoyannis G, Touloumi G (2012) Practical methods for competing risks data: a review. Stat Methods Med Res 21(3):257–272

    MathSciNet  Article  MATH  Google Scholar 

  5. Basu AP, Ghosh JK (1978) Identifiability of the multinormal and other distributions under competing risks model. J Multivar Anal 8(3):413–429

    MathSciNet  Article  MATH  Google Scholar 

  6. Braekers R, Veraverbeke N (2005) A copula-graphic estimator for the conditional survival function under dependent censoring. Can J Stat 33(3):429–447

    MathSciNet  Article  MATH  Google Scholar 

  7. Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13:215–232

    MathSciNet  Article  MATH  Google Scholar 

  8. Chen Y-H (2010) Semiparametric marginal regression analysis for dependent competing risks under an assumed copula. J R Stat Soc B 72(2):235–251

    MathSciNet  Article  Google Scholar 

  9. Crowder MJ (2001) Classical competing risks. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  10. David HA, Moeschberger ML (1978) The theory of competing risks, vol 39. Griffin, London

    Google Scholar 

  11. de Uña-Álvarez J, Veraverbeke N (2013) Generalized copula-graphic estimator. Test 22(2):343–360

    MathSciNet  Article  MATH  Google Scholar 

  12. de Uña-Álvarez J, Veraverbeke N (2017) Copula-graphic estimation with left-truncated and right-censored data. Statistics 51(2):387–403

    MathSciNet  Article  MATH  Google Scholar 

  13. Domma F, Giordano S (2013) A copula-based approach to account for dependence in stress-strength models. Stat Pap 54(3):807–826

    MathSciNet  Article  MATH  Google Scholar 

  14. Domma F, Giordano S (2016) Concomitants of m-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family. J Comput Appl Math 294:413–435

    MathSciNet  Article  MATH  Google Scholar 

  15. Durante F, Sempi C (2015) Principles of copula theory. CRC Press, Boca Raton

    Google Scholar 

  16. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, London

    Google Scholar 

  17. Emura T (2017) joint.Cox: Penalized likelihood estimation and dynamic prediction under the joint frailty-copula models between tumour progression and death for meta-analysis, CRAN, R package version 2.13

  18. Emura T, Chen Y-H (2016) Gene selection for survival data under dependent censoring: a copula-based approach. Stat Methods Med Res 25(6):2840–2857

    MathSciNet  Article  Google Scholar 

  19. Emura T, Chen YH (2018) Analysis of Survival Data with Dependent Censoring. Copula-Based Approaches. JSS Research Series in Statistics, Springer, Singapore

    Google Scholar 

  20. Emura T, Michimae H (2017) A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environ Ecol Stat 24(1):151–173

    MathSciNet  Article  Google Scholar 

  21. Emura T, Nakatochi M, Murotani K, Rondeau V (2015) A joint frailty-copula model between tumor progression and death for meta-analysis. Stat Methods Med Res. https://doi.org/10.1177/0962280215604510

    Google Scholar 

  22. Escarela G, Carrière JF (2003) Fitting competing risks with an assumed copula. Stat Methods Med Res 12(4):333–349

    MathSciNet  Article  MATH  Google Scholar 

  23. Eyraud H (1936) Les principes de la mesure des correlations. Ann Univ Lyon III Ser Sect A 1:30–47

    MATH  Google Scholar 

  24. Fan T-H, Hsu T-M (2015) Statistical inference of a two-component series system with correlated log-normal lifetime distribution under multiple type-I censoring. IEEE Trans Reliab 64(1):376–385

    Article  Google Scholar 

  25. Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55(292):698–707

    MathSciNet  Article  MATH  Google Scholar 

  26. Heckman JJ, Honore BE (1989) The identifiability of the competing risks models. Biometrika 76:325–330

    MathSciNet  Article  MATH  Google Scholar 

  27. Hsu T-M, Emura T, Fan T-H (2016) Reliability inference for a copula-based series system life test under multiple type-I censoring. IEEE Trans Reliab 65(1):1069–1080

    Article  Google Scholar 

  28. Hu Y-H, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation. Comput Stat 30(4):1199–1229

    MathSciNet  Article  MATH  Google Scholar 

  29. Huang JS, Kotz S (1999) Modifications of the Farlie–Gumbel–Morgenstern distributions. A tough hill to climb. Metrika 49:135–145

    MathSciNet  Article  MATH  Google Scholar 

  30. Knight K (2000) Mathematical statistics. Chapman and Hall, Boca Raton

    Google Scholar 

  31. Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, Hoboken

    Google Scholar 

  32. Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, New York

    Google Scholar 

  33. Lindsay SR, Wood GR, Woollons RC (1996) Modelling the diameter distribution of forest stands using the Burr distribution. J Appl Stat 23(6):609–620

    Article  Google Scholar 

  34. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    Google Scholar 

  35. Mendenhall W, Hader RJ (1958) Estimation of parameters of mixed exponential distributed failure time distribution from censored life test data. Biometrika 45(3–4):504–520

    MathSciNet  Article  MATH  Google Scholar 

  36. Moeschberger ML (1974) Life tests under dependent competing causes of failure. Technometrics 16(1):39–47

    MathSciNet  Article  MATH  Google Scholar 

  37. Mokhlis NA (2005) Reliability of a stress-strength model with Burr type III distributions. Commun Stat Theory Methods 34(7):1643–1657

    MathSciNet  Article  MATH  Google Scholar 

  38. Morgenstern D (1956) Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt für Mathematishe Statistik 8:234–235

    MathSciNet  MATH  Google Scholar 

  39. Navarro J (2016) Distribution-free comparison of residual lifetimes of coherent systems based on copula properties. Stat Pap. https://doi.org/10.1007/s00362-016-0789-0

    Google Scholar 

  40. Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    Google Scholar 

  41. Ramsay JO (1988) Monotone regression splines in action. Stat Sci 3(4):425–461

    Article  Google Scholar 

  42. Rivest LP, Wells MT (2001) A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. J Multivar Anal 79:138–155

    MathSciNet  Article  MATH  Google Scholar 

  43. Shao Q (2000) Estimation for hazardous concentrations based on NOEC toxicity data: an alternative approach. Environmetrics 11:583–595

    Article  Google Scholar 

  44. Sherrick BJ, Garcia P, Tirupattur V (1996) Recovering probabilistic information form option markets: test of distributional assumptions. J Futures Mark 16(5):545–560

    Article  Google Scholar 

  45. Shih J-H (2018) R GFGM.copula: Generalized Farlie–Gumbel–Morgenstern Copula, CRAN: version 1.0.2

  46. Shih J-H, Emura T (2016) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula. Stat Pap. https://doi.org/10.1007/s00362-016-0865-5

    Google Scholar 

  47. Staplin ND, Kimber AC, Collett D, Roderick PJ (2015) “Dependent censoring in piecewise exponential survival models. Stat Methods Med Res 24(3):325–341

    MathSciNet  Article  Google Scholar 

  48. Tsiatis A (1975) A nonidentifiability aspect of the problem of competing risks. Proc Natl Acad Sci USA 72(1):20–22

    MathSciNet  Article  MATH  Google Scholar 

  49. Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82(1):127–138

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the co-editor and two anonymous reviewers for their helpful comments that greatly improved the presentation of the paper. This work is supported by the research grants funded by the government of Taiwan (MOST 103-2118-M-008-MY2; MOST 105-2118-M-008-003-MY2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeshi Emura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 856 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shih, J., Emura, T. Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula. Comput Stat 33, 1293–1323 (2018). https://doi.org/10.1007/s00180-018-0804-0

Download citation

Keywords

  • Bivariate survival analysis
  • Burr III distribution
  • Copula
  • Parametric bootstrap
  • Reliability