A general class of scale-shape mixtures of skew-normal distributions: properties and estimation

Abstract

This paper introduces the scale-shape mixtures of skew-normal (SSMSN) distributions which provide alternative candidates for modeling asymmetric data in a wide variety of settings. We obtain the moments and study some characterizations of the SSMSN distributions. Instead of resorting to numerical optimization procedures, two variants of EM algorithms are developed for carrying out maximum likelihood estimation. Our algorithms are analytically simple because closed-form expressions of conditional expectations in the E-step as well as the updating estimators in the M-step can be explicitly obtained. The observed information matrix is derived for approximating the asymptotic covariance matrix of parameter estimates. A simulation study is conducted to examine the finite sample properties of ML estimators. The utility of the proposed methodology is illustrated by analyzing a real example.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aitken AC (1926) On Bernoulli’s numerical solution of algebraic equations. Proc R Soc Edinburgh 46:289–305

    Article  MATH  Google Scholar 

  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (ed) 2nd International Symposium on Information Theory (pp 267–281). Akademiai Kiado, Budapest

  3. Arellano-Valle RB, Castro LM, Genton MG, Gómez HW (2008) Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis. Bayesian Ana 3:513–540

    MathSciNet  Article  MATH  Google Scholar 

  4. Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  5. Azzalini A (2005) The skew-normal distribution and related multivariate families. Scand J Stat 32:159–188

    MathSciNet  Article  MATH  Google Scholar 

  6. Azzalini A (2014) The R package sn: the skew-normal and skew-\(t\) distributions (version 1.1-2). Universit‘a di Padova, Italia. http://azzalini.stat.unipd.it/SN

  7. Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution. J R Stat Soc Ser B 65:367–389

    MathSciNet  Article  MATH  Google Scholar 

  8. Barndorff-Nielsen OE, Blæsild P (1981) Hyperbolic distributions and ramifications: contributions to theory and applications. In: Taillie C, Patil GP, Baldessari BA (eds) Statistical distributions in scientific work, vol 4. D. Reidel, Amsterdam, pp 19–44

    Google Scholar 

  9. Barndorff-Nielsen OE, Stelzer R (2004) Absolute moments of generalized hyperbolic distributions and approximate scaling of normal inverse Gaussian Levy-processes. Working paper 178, Centre for Analytical Finance, University of Aarthus

  10. Böhning D, Dietz E, Schaub R, Schlattmann P, Lindsay B (1994) The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Ann Inst Stat Math 46:373–388

    Article  MATH  Google Scholar 

  11. Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79:99–113

    MathSciNet  Article  MATH  Google Scholar 

  12. Cabral CRB, Bolfarine H, Pereira JRG (2008) Bayesian density estimation using skew student-\(t\)-normal mixtures. Comput Stat Data Anal 52:5075–5090

    MathSciNet  Article  MATH  Google Scholar 

  13. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc B 39:1–38

    MATH  Google Scholar 

  14. Ferreira CS, Bolfarine H, Lachos VH (2011) Skew scale mixture of normal distributions: properties and estimation. Stat Method 8:154–171

    MathSciNet  Article  MATH  Google Scholar 

  15. Garay AW, Lachos VH, Bolfarine H, Cabral CR (2015) Linear censored regression models with scale mixtures of normal distributions. Stat Pap. doi:10.1007/s00362-012-0459-9

  16. Genton MG (2004) Skew-elliptical distributions and their applications. Chapman & Hall, New York

    Google Scholar 

  17. Gómez HW, Venegas O, Bolfarine H (2007) Skew-symmetric distributions generated by the distribution of the normal distribution. Environmetrics 18:395–407

    MathSciNet  Article  Google Scholar 

  18. Henze N (1986) A probabilistic representation of the “skew-normal” distribution. Scand J Stat 13:271–275

    MathSciNet  MATH  Google Scholar 

  19. Jørgensen S (1982) Statistical properties of the generalized inverse Gaussian distribution. Springer, New York

    Google Scholar 

  20. Lee SX, McLachlan GJ (2013) EMMIXuskew: an R package for fitting mixtures of multivariate skew \(t\)-distributions via the EM algorithm. J Stat Soft 55(12)

  21. Liu CH, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81:633–648

    MathSciNet  Article  MATH  Google Scholar 

  22. Maier L, Anderson D, De Jager P, Wicker L, Hafler D (2007) Allelic variant in ctla4 alters t cell phosphorylation patterns. Proc Natl Acad Sci USA 104:18607–18612

    Article  Google Scholar 

  23. Meilijson I (1989) A fast improvement to the EM algorithm to its own terms. J R Stat Soc Ser B 51:127–138

    MathSciNet  MATH  Google Scholar 

  24. Meng XL, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278

    MathSciNet  Article  MATH  Google Scholar 

  25. Rogers WH, Tukey JW (1972) Understanding some long-tailed symmetrical distributions. Stat Neerl 26:211–226

    MathSciNet  Article  MATH  Google Scholar 

  26. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    MathSciNet  Article  MATH  Google Scholar 

  27. Wang J, Genton MG (2006) The multivariate skew-slash distribution. J Stat Plan Inf 136:209–220

    MathSciNet  Article  MATH  Google Scholar 

  28. Wu LC (2014) Variable selection in joint location and scale models of the skew-\(t\)-normal distribution. Commun Stat Simul Comput 43:615–630

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the chief editor, the associate editor and two anonymous referees for their insightful comments and suggestions, which led to a much improved version of this article. This research was supported by MOST 105-2118-M-005-003-MY2 awarded by the Ministry of Science and Technology of Taiwan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsung-I Lin.

Appendix

Appendix

A. R function double.int()

figurea

B. Proof of Eq. (16)

Let \(\tau _1\,{\sim }\, \varGamma (\nu _1/2,\nu _1/2)\) and \(\tau _2\,{\sim }\, \varGamma (\nu _2/2,\nu _2/2)\) be two independent random variables. Also, let and \(Z_1\) and \(Z_2\) be two independent N(0, 1) random variables, which are independent of \(\tau _1\) and \(\tau _2\). If \(Y_0\,{\sim }\,\textit{STT}(0,1,\lambda ,\nu _1,\nu _2)\), then

$$\begin{aligned} Y_0\mathop {=}\limits ^\mathrm{d} \left[ (\tau _1^{-1/2} Z_1)\mid (\tau _2^{-1/2}Z_2<\lambda \tau _1^{-1/2} Z_1) \right] \mathop {=}\limits ^\mathrm{d} \left[ W_1\mid W_2< \lambda W_1 \right] , \end{aligned}$$

where \(W_1\,{=}\,\tau _1^{-1/2} Z_1\,{\sim }\, t(0,1,\nu _1)\) and \(W_2\,{=}\,\tau _2^{-1/2} Z_2\,{\sim }\, t(0,1,\nu _2)\), and they are independent. By Bayes’ theorem, the pdf of \(Y_0\) is

$$\begin{aligned} f(y_0)= & {} \frac{f_{W_1}(y_0)\Pr (W_2<\lambda W_1\mid W_1=y_0)}{\Pr (W_2<\lambda W_1)=0.5}\\= & {} 2 f_{W_1}(y_0) F_{W_2}(\lambda y_0)\\= & {} 2 t(y_0;\nu _1) T(\lambda y_0;\nu _2). \end{aligned}$$

Now, if we make the location and scale transformation \(Y\,{=}\,\xi +\sigma Y_0\). The pdf of Y is

$$\begin{aligned} f(y)=\frac{1}{\sigma }f_{Y_0}\left( \frac{y-\xi }{\sigma }\right) = \frac{2}{\sigma } t(u;\nu _1)T(\eta ;\nu _2), \end{aligned}$$

where \(u\,{=}\,(y-\xi )/\sigma \) and \(\eta \,{=}\,\lambda u\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamalizadeh, A., Lin, T. A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Comput Stat 32, 451–474 (2017). https://doi.org/10.1007/s00180-016-0691-1

Download citation

Keywords

  • Asymmetry
  • Bessel function
  • Kurtosis
  • Observed information
  • Skew distributions
  • Truncated normal