Geometrically designed, variable knot regression splines

Abstract

A new method of Geometrically Designed least squares (LS) splines with variable knots, named GeDS, is proposed. It is based on the property that the spline regression function, viewed as a parametric curve, has a control polygon and, due to the shape preserving and convex hull properties, it closely follows the shape of this control polygon. The latter has vertices whose x-coordinates are certain knot averages and whose y-coordinates are the regression coefficients. Thus, manipulation of the position of the control polygon may be interpreted as estimation of the spline curve knots and coefficients. These geometric ideas are implemented in the two stages of the GeDS estimation method. In stage A, a linear LS spline fit to the data is constructed, and viewed as the initial position of the control polygon of a higher order (\(n>2\)) smooth spline curve. In stage B, the optimal set of knots of this higher order spline curve is found, so that its control polygon is as close to the initial polygon of stage A as possible and finally, the LS estimates of the regression coefficients of this curve are found. The GeDS method produces simultaneously linear, quadratic, cubic (and possibly higher order) spline fits with one and the same number of B-spline coefficients. Numerical examples are provided and further supplemental materials are available online.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Antoniadis A, Gijbels I, Verhasselt A (2012) Variable selection in additive models using P-splines. Technometrics 54(4):425–438

    MathSciNet  Article  Google Scholar 

  2. Beliakov G (2004) Least squares splines with free knots: global optimization approach. Appl Math Comput 149:783–798

    MathSciNet  MATH  Google Scholar 

  3. Belitser E, Serra P (2014) Adaptive priors based on splines with random knots. Bayesian Anal 9(4):859–882

    MathSciNet  Article  MATH  Google Scholar 

  4. Biller C (2000) Adaptive Bayesian regression splines in semiparametric generalized linear models. J Comput Graph Stat 9:122–140

    MathSciNet  Google Scholar 

  5. Cohen E, Riesenfeld RF, Elber G (2001) Geometric modelling with splines: an introduction. A K Peters, Natick

    Google Scholar 

  6. De Boor C (2001) A practical guide to splines, revised Edition. Springer, New York

    Google Scholar 

  7. Denison D, Mallick B, Smith A (1998) Automatic Bayesian curve fitting. J R Stat Soc B 60:333–350

    MathSciNet  Article  MATH  Google Scholar 

  8. Donoho D, Johnstone I (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455

    MathSciNet  Article  MATH  Google Scholar 

  9. Eubank R (1988) Spline smoothing and nonparametric regression. Dekker, New York

    Google Scholar 

  10. Fan J, Gijbels I (1995) Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaptation. J R Stat Soc B 57:371–394

    MathSciNet  MATH  Google Scholar 

  11. Farin G (2002) Curves and surfaces for CAGD, 5th edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  12. Friedman JH (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19:1–141

    Article  MATH  Google Scholar 

  13. Friedman JH, Silverman BW (1989) Flexible parsimonious smoothing and additive modeling (with discussion). Technometrics 31:3–39

    MathSciNet  Article  MATH  Google Scholar 

  14. Hansen MH, Kooperberg C (2002) Spline adaptation in extended linear models (with comments and a rejoinder by the authors). Stat Sci 17(1):2–51

    MathSciNet  Article  MATH  Google Scholar 

  15. Hastie T (1989) [Flexible Parsimonious Smoothing and Additive Modeling]: Discussion. Technometrics 31:23–29

  16. Huang JZ (2003) Local assymptotics for polynomial spline regression. Ann Stat 31:1600–1635

    Article  MATH  Google Scholar 

  17. Jupp D (1978) Approximation to data by splines with free knots. SIAM J Numer Anal 15:328–343

    MathSciNet  Article  MATH  Google Scholar 

  18. Kaishev VK (1984) A computer program package for solving spline regression problems. In: Havranek T, Sidak Z, Novak M (eds) Proceedings in computational statistics, COMPSTAT. Physica-verlag, Wien, pp 409–414

    Google Scholar 

  19. Kang H, Chen F, Li Y, Deng J, Yang Z (2015) Knot calculation for spline fitting via sparse optimization. Comput Aided Des 58:179–188

    MathSciNet  Article  Google Scholar 

  20. Kimber SAJ, Kreyssig A, Zhang YZ, Jeschke HO, Valenti R, Yokaichiya F, Colombier E, Yan J, Hansen TC, Chatterji T, McQueeney RJ, Canfield PC, Goldman AI, Argyriou DN (2009) Similarities between structural distortions under pressure and chemical doping in superconducting \(\text{ BaFe }_2\text{ As }_2\). Nat Mater 8:471–475

    Article  Google Scholar 

  21. Lee TCM (2000) Regression spline smoothing using the minimum description length principle. Stat Probab Lett 48:71–82

    MathSciNet  Article  MATH  Google Scholar 

  22. Lee TCM (2002a) Automatic smoothing for discontinuous regression functions. Stat Sin 12:823–842

    MathSciNet  MATH  Google Scholar 

  23. Lee TCM (2002b) On algorithms for ordinary least squares regression spline fitting: a comparative study. J Stat Comput Simul 72:647–663

    MathSciNet  Article  MATH  Google Scholar 

  24. Lindstrom MJ (1999) Penalized estimation of free-knot splines. J Comput Graph Stat 8(2):333–352

    MathSciNet  Google Scholar 

  25. Luo Z, Wahba G (1997) Hybrid adaptive splines. J Am Stat Assoc 92:107–115

    MathSciNet  Article  MATH  Google Scholar 

  26. Mammen E, Van der Geer S (1997) Locally adaptive regression splines. Ann Stat 25(1):387–413

    MathSciNet  Article  MATH  Google Scholar 

  27. Marx BD, Eilers PHC (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11(2):89–121

    MathSciNet  Article  MATH  Google Scholar 

  28. Miyata S, Shen X (2003) Adaptive free-knot splines. J Comput Graph Stat 12(1):197–231

    MathSciNet  Article  Google Scholar 

  29. Molinari N, Durand J-F, Sabatier R (2004) Bounded optimal knots for regression splines. Comput Stat Data Anal 45(2):159–178

    MathSciNet  Article  MATH  Google Scholar 

  30. Pittman J (2002) Adaptive splines and genetic algorithms. J Comput Graph Stat 11(3):1–24

    MathSciNet  Article  Google Scholar 

  31. Rupert D (2002) Selecting the number of knots for penalized splines. J Comput Graph Stat 11(4):735–757

    MathSciNet  Article  Google Scholar 

  32. Rupert D, Carroll RJ (2000) Spatially-adaptive penalties for spline fitting. Aust N Z J Stat 42:205–223

    Article  Google Scholar 

  33. Schwetlick H, Schütze T (1995) Least squares approximation by splines with free knots. BIT Numer Math 35:854–866

    MathSciNet  Article  MATH  Google Scholar 

  34. Smith PL (1982) Curve fitting and modeling with splines using statistical variable selection techniques. Report NASA 166034, Langley Research Center, Hampton

  35. Smith M, Kohn R (1996) Nonparametric regression using Bayesian variable selection. J Econom 75:317–344

    Article  MATH  Google Scholar 

  36. Stone CJ, Hansen MH, Kooperberg C, Truong YK (1997) Polynomial splines and their tensor products in extended linear modeling. Ann Stat 25:1371–1470

    MathSciNet  Article  MATH  Google Scholar 

  37. Van Loock W, Pipeleers G, De Schutter J, Swevers J (2011) A convex optimization approach to curve fitting with B-splines. In: Preprints of the 18th international federation of automatic control (IFAC), Milano (Italy), 2290–2295

  38. Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

    Google Scholar 

  39. Will G (2006) Powder diffraction: the rietveld method and the two stage method. Springer, Berlin

    Google Scholar 

  40. Wood SN (2003) Thin plate regression splines. J R Stat Soc B 65(1):95–114

    MathSciNet  Article  MATH  Google Scholar 

  41. Yuan Y, Chen N, Zhou S (2013) Adaptive B-spline knots selection using multi-resolution basis set. IIE Trans 45(12):1263–1277

    Article  Google Scholar 

  42. Zhou S, Shen X (2001) Spatially adaptive regression splines and accurate knot selection schemes. J Am Stat Assoc 96:247–259

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support received through a research grant from the UK Institute of Actuaries. The authors would also like to thank Simon Kimber for providing them with the \(\hbox {BaFe}_2\hbox {As}_2\) dataset and the results from the Rietveld fit given in Kimber et al. (2009). The sincere encouragement received by David van Dyk, and his help in discussing and providing invaluable advice on ways to improve the paper are greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir K. Kaishev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2031 KB)

Appendices

Appendices

Proofs of the results of section 3.1

Proof of Theorem 3.4

Note that, for \(n=2\), \(\xi _i\equiv \xi _i^*\), \(i=1,\ldots ,p\), hence \(V^a[g]\equiv V[g]\) and the bound in (23), which is zero, is sharp. For \(n>2\), from (4) it follows that \(\xi _1^*\equiv a\equiv \xi _1\) and \(\xi _p^*\equiv b\equiv \xi _p\), and from the definitions of V[g] and \(V^a[g]\), (9) and (22) respectively, we have

$$\begin{aligned} \Vert V[g]-V^a[g]\Vert _{\infty }= & {} \text{ max }_{t\in [a,b]}\left| \sum _{i=1}^p\left( g\left( \xi _i^*\right) -g\left( \xi _i\right) \right) N_{i,n}(t)\right| \nonumber \\\le & {} \text{ max }_{t\in [a,b]}\sum _{i=1}^p\left| \left( g\left( \xi _i^*\right) -g\left( \xi _i\right) \right) \right| N_{i,n}(t)\nonumber \\\le & {} \text{ max }_{t\in [a,b]}\sum _{i=1}^p\left\{ \text{ max }_{j\in \{2,\ldots ,p-1\}} \left| \left( g\left( \xi _j^*\right) -g\left( \xi _j\right) \right) \right| \right\} N_{i,n}(t)\nonumber \\\le & {} \text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \left( g\left( \xi _j^*\right) -g(\xi _j)\right) \right| \text{ max }_{t\in [a,b]}\sum _{i=1}^pN_{i,n}(t)\nonumber \\= & {} \text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \left( g\left( \xi _j^*\right) -g(\xi _j)\right) \right| , \end{aligned}$$
(27)

where the last equality follows from the partition of unity property of B-splines (see Sect. 2). Applying the definition of the modulus of continuity to (27) we have

$$\begin{aligned} \Vert V[g]-V^a[g]\Vert _{\infty }\le & {} \text{ max }_{j\in \{2,\ldots ,p-1\}} \left| \left( g\left( \xi _j^*\right) -g(\xi _j)\right) \right| \nonumber \\\le & {} \omega \left( g;\text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \xi _j^*-\xi _j\right| \right) . \end{aligned}$$
(28)

From the definition (4) of the Greville sites \(\xi _i^*\) we have \(\xi _j^*=(t_{j+1}+\ldots + t_{j+n-1})/(n-1)\), \(j=2,\ldots ,p-1\). From (21), it follows that \(t_{j+1}=\left( \xi _{j-(n-2)}+\ldots +\xi _j \right) /(n-1),\ldots , t_{j+n-1}=\left( \xi _{j}+\ldots +\xi _{j+(n-2)} \right) /(n-1)\), where we have defined \(\xi _{1-l}:=a\) and \(\xi _{p+l}:=b\), \(l=1,2,\ldots \). Consider the \(\text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \xi _j-\xi _j^*\right| \) and assume it is achieved for some \(j^m\), \(2\le j^m<p-1\). Expressing \(\xi _{j^m}^*\) in terms of \(\xi _{j^m}\), using the above equalities, after some algebra, it is not difficult to see that

$$\begin{aligned} \left| \xi _{j^m}-\xi _{j^m}^*\right| =\frac{1}{(n-1)^2} \left| \sum _{i=1}^{n-2}i\left( \xi _{j^m+(n-1-i)}+\xi _{j^m-(n-1-i)}\right) -(n-1)(n-2) \xi _{j^m}\right| \end{aligned}$$
(29)

and if we now rearrange the terms in the sum in (29), we obtain

$$\begin{aligned} \left| \xi _{j^m}-\xi _{j^m}^*\right| =\frac{1}{(n-1)^2}\left| \sum _{i=1}^{n-2}i\left( \left( \xi _{j^m+(n-1-i)}-\xi _{j^m}\right) -\left( \xi _{j^m}-\xi _{j^m-(n-1-i)}\right) \right) \right| . \end{aligned}$$
(30)

Assume that \(\sum _{i=1}^{n-2}i\left( \xi _{j^m+(n-1-i)}-\xi _{j^m}\right) >\sum _{i=1}^{n-2}i\left( \xi _{j^m}-\xi _{j^m-(n-1-i)}\right) \). In this case, it is not difficult to see that (30) is bounded by

$$\begin{aligned} \left| \xi _{j^m}-\xi _{j^m}^*\right|\le & {} \frac{1}{(n-1)^2}\sum _{i=1}^{n-2}i \left( \xi _{j^m+(n-1-i)}-\xi _{j^m}\right) \nonumber \\\le & {} \,\frac{1}{(n-1)^2}\frac{(n-2)(n-1)}{2}\left( \xi _{j^m+(n-2)}-\xi _{j^m} \right) \nonumber \\\le & {} \,\frac{(n-2)}{2(n-1)}\left( \xi _{j^m+(n-2)}-\xi _{j^m}\right) \nonumber \\\le & {} \,\frac{(n-2)^2}{2(n-1)}\text{ max }_{j\in \{1,\ldots ,p-1\}}(\xi _{j+1}-\xi _j). \end{aligned}$$
(31)

Similarly, it can be shown that if \(\sum _{i=1}^{n-2}i\left( \xi _{j^m+(n-1-i)}-\xi _{j^m}\right) \le \sum _{i=1}^{n-2}i\Big (\xi _{j^m}- \xi _{j^m-(n-1-i)}\Big )\) the bound in (31) also holds. Thus, from (31) and (28) we have

$$\begin{aligned} \Vert V[g]-V^a[g]\Vert _{\infty }\le \omega \left( g;\frac{(n-2)^2}{2(n-1)} \text{ max }_{j\in \{1,\ldots ,p-1\}}(\xi _{j+1}-\xi _j)\right) . \end{aligned}$$
(32)

Using the monotonicity and subadditivity of \(\omega (g;h)\) in h, from (32) we finally obtain

$$\begin{aligned} \Vert V[g]-V^a[g]\Vert _{\infty }\le \left\lceil \frac{(n-2)^2}{2(n-1)}\right\rceil \omega \left( g;\text{ max }_{j\in \{1, \ldots ,p-1\}}(\xi _{j+1}-\xi _j)\right) \end{aligned}$$

where \(\lceil \nu \rceil :=\hbox {min}\{z\in \mathbb {Z}:\nu \le z\}\). This completes the proof of Theorem 3.4. \(\square \)

Proof of Corollary 3.5

This follows directly from (32) and from the definition, (24) of \(\omega (g;h)\), i.e.

$$\begin{aligned} \Vert V[t]-V^a[t]\Vert _{\infty }=\left\| t-\sum _{i=1}^p\delta _{i+1} N_{i,n}(t)\right\| _{\infty }\le \frac{(n-2)^2}{2(n-1)} \text{ max }_{j\in \{1,\ldots ,p-1\}}(\delta _{j+2}-\delta _{j+1}). \end{aligned}$$

\(\square \)

Proof of Corollary 3.6

From (27), for \(n=3\) and \(g=\hat{f}\), we have

$$\begin{aligned} \Vert V[\hat{f}]-V^a[\hat{f}]\Vert _{\infty }\le & {} \text{ max }_{j\in \{2,\ldots ,p-1\}} \left| \hat{f}\left( \varvec{\delta }_{l,2},\varvec{\hat{\alpha }};\xi _j^*\right) -\hat{f}\left( \varvec{\delta }_{l,2},\varvec{\hat{\alpha }};\delta _{j+1}\right) \right| \end{aligned}$$
(33)
$$\begin{aligned}= & {} \text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \sum _{i=1}^p\hat{\alpha }_i N_{i,2}\left( \xi _j^*\right) -\sum _{i=1}^p\hat{\alpha }_i N_{i,2} (\delta _{j+1})\right| \nonumber \\= & {} \text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \sum _{i=1}^p\hat{\alpha }_i N_{i,2}\left( \xi _j^*\right) -\hat{\alpha }_j\right| \nonumber \\= & {} \text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \sum _{i=j-1}^{j+1}\hat{\alpha }_i N_{i,2}\left( \xi _j^*\right) -\hat{\alpha }_j\right| \end{aligned}$$
(34)

Recall that \(n=3\) and hence, \(\xi _j^*=(t_{j+1}+t_{j+2})/2\), and \(t_{j+1}=(\delta _j+\delta _{j+1})/2\), \(t_{j+2}=(\delta _{j+1}+\delta _{j+2})/2\). Therefore, we need to consider the cases when \(\delta _{j}<\xi _j^*\le \delta _{j+1}\), or \(\delta _{j+1}\le \xi _j^*<\delta _{j+2}\), \(2\le j\le p-1\). In the first case, applying the Mansfield-De Boor-Cox recurrence formula we know that if \(\delta _j<\xi _j^*<\delta _{j+1}\), then \(\sum _{i=j-1}^{j+1}\hat{\alpha }_i N_{i,2}\left( \xi _j^*\right) =\hat{\alpha }_{j-1} N_{j-1,2}\left( \xi _j^*\right) +\hat{\alpha }_{j}N_{j,2}\left( \xi _j^*\right) \), which is a convex combination of only two B-spline coefficients. Thus, (34) becomes

$$\begin{aligned}&\text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \hat{\alpha }_{j-1}N_{j-1,2} \left( \xi _j^*\right) +\hat{\alpha }_j N_{j,2}\left( \xi _j^*\right) -\hat{\alpha }_j\right| \nonumber \\&\quad =\text{ max }_{j\in \{2,\ldots ,p-1\}}\left| \hat{\alpha }_{j-1} \frac{\delta _{j+1}-\xi _j^*}{\delta _{j+1}-\delta _{j}} +\hat{\alpha }_j\frac{\xi _j^*-\delta _{j}}{\delta _{j+1}-\delta _{j}} -\hat{\alpha }_j\frac{\delta _{j+1}-\delta _{j}}{\delta _{j+1} -\delta _{j}}\right| \nonumber \\&\quad =\text{ max }_{j\in \{2,\ldots ,p-1\}}\left| (\hat{\alpha }_{j-1} -\hat{\alpha }_j)\right| \left( \frac{\delta _{j+1}-\xi _j^*}{\delta _{j+1} -\delta _{j}}\right) \nonumber \\&\quad <\text{ max }_{j\in \{2,\ldots ,p-1\}}\left| (\hat{\alpha }_{j-1} -\hat{\alpha }_j)\right| \left( \frac{\frac{1}{4}\left( \delta _{j+1} -\delta _{j}\right) }{\delta _{j+1}-\delta _{j}}\right) \nonumber \\&\quad =\frac{1}{4}\text{ max }_{j\in \{2,\ldots ,p-1\}} \left| (\hat{\alpha }_{j-1}-\hat{\alpha }_j)\right| , \end{aligned}$$
(35)

where we have used the fact that \(\delta _{j+2}-\delta _{j+1}>0\) to arrive at the last inequality. Similarly, it is not difficult to see that the same bound as in (35) holds in the case when \(\delta _{j+1}\le \xi _j^*\le \delta _{j+2}\). This completes the proof of Corollary 3.6. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaishev, V.K., Dimitrova, D.S., Haberman, S. et al. Geometrically designed, variable knot regression splines. Comput Stat 31, 1079–1105 (2016). https://doi.org/10.1007/s00180-015-0621-7

Download citation

Keywords

  • Spline regression
  • B-splines
  • Greville abscissae
  • Variable knot splines
  • Control polygon

JEL Classification

  • C13
  • C14