Advertisement

Computational Statistics

, Volume 29, Issue 3–4, pp 799–811 | Cite as

Fast algorithms for a space-time concordance measure

  • Sergio J. ReyEmail author
Original Paper

Abstract

This paper presents a number of algorithms for a recently developed measure of space-time concordance. Based on a spatially explicit version of Kendall’s \(\tau \) the original implementation of the concordance measure relied on a brute force \(O(n^2)\) algorithm which has limited its use to modest sized problems. Several new algorithms have been devised which move this run time to \(O(n log(n) +np)\) where \(p\) is the expected number of spatial neighbors for each unit. Comparative timing of these alternative implementations reveals dramatic efficiency gains in moving away from the brute force algorithms. A tree-based implementation of the spatial concordance is also found to dominate a merge sort implementation.

Keywords

Spatial concordance Autocorrelation Rank correlation 

References

  1. Abdi H (2007) The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics Sage, Thousand Oaks, CA, pp 508–510Google Scholar
  2. Boyle GE, McCarthy TG (1997) A simple measure of \(\beta \)-convergence. Oxf Bull Econ Stat XXVIII(1):155–211Google Scholar
  3. Chapelle O, Sindhwani V, Keerthi S (2008) Optimization techniques for semi-supervised support vector machines. J Mach Learn Res 9:203–233zbMATHGoogle Scholar
  4. Cherubini U, Luciano E (2001) Value-at-risk trade-off and capital allocation with copulas. Econ Notes 30(2):235–256CrossRefGoogle Scholar
  5. Christensen D (2005) Fast algorithms for the calculation of Kendall’s \(\tau \). Comput Stat 20(1):51–62CrossRefzbMATHGoogle Scholar
  6. Cuadrado-Roura J (2009) Regional policy, economic growth and convergence: lessons from the Spanish case. Springer, BerlinGoogle Scholar
  7. D’Agostino M, Dardanoni V (2009) The measurement of rank mobility. J Econ Theory 144(4):1783–1803CrossRefzbMATHMathSciNetGoogle Scholar
  8. Dardanoni V, Lambert P (2001) Horizontal inequity comparisons. Soc Choice Welf 18(4):799–816CrossRefzbMATHMathSciNetGoogle Scholar
  9. Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings of the 10th international conference on World Wide Web, ACM, pp 613–622Google Scholar
  10. Fagin R, Kumar R, Sivakumar D (2003) Efficient similarity search and classification via rank aggregation. In: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, ACM, pp 301–312Google Scholar
  11. Fairbairn D (2006) Measuring map complexity. Cartogr J 43(3):224–238CrossRefGoogle Scholar
  12. Genest C, Nešlehová J (2011) Estimators based on Kendall’s Tau in multivariate copula models. Aust N Z J Stat 53(2):157–177CrossRefzbMATHMathSciNetGoogle Scholar
  13. Glick B (1982) A spatial rank-order correlation measure. Geogr Anal 14(2):177–181CrossRefGoogle Scholar
  14. Jones E, Oliphant T, Peterson P, et al (2001) SciPy: Open source scientific tools for Python. http://www.scipy.org/
  15. Kendall MG (1962) Rank correlation methods, 3rd edn. Griffin, LondonGoogle Scholar
  16. Kepner W, Watts C, Edmonds C, Maingi J, Marsh S, Luna G (2000) A landscape approach for detecting and evaluating change in a semi-arid environment. Environ Monit Assess 64(1):179–195CrossRefGoogle Scholar
  17. Knight W (1966) A computer method for calculating Kendall’s Tau with ungrouped data. J Am Stat Assoc 61:436–439Google Scholar
  18. Kundzewicz Z, Robson A (2004) Change detection in hydrological records: a review of the methodology/revue méthodologique de la détection de changements dans les chroniques hydrologiques. Hydrol Sci J 49(1):1–19Google Scholar
  19. MacEachren A (1982) Map complexity: comparison and measurement. Cartogr Geogr Inf Sci 9(1):31–46Google Scholar
  20. Nelsen R (1991) Copulas and association. In: DallÁglio G, Kotz S, Aalinetti G (eds) Advances in probability distributions with given marginals. Kluwer, Dordrecth, pp 51–74CrossRefGoogle Scholar
  21. Rey SJ (2004) Spatial dependence in the evolution of regional income distributions. In: Getis A, Múr J, Zoeller H (eds) Spatial econometrics and spatial statistics. Palgrave, Hampshire, pp 193–213Google Scholar
  22. Rey SJ, Anselin L (2010) PySAL: a python library of spatial analytical methods. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 175–193CrossRefGoogle Scholar
  23. Rey SJ, Le Gallo J (2009) Spatial analysis of economic convergence. In: Mills TC, Patterson K (eds) Handbook of econometrics, vol II. Applied EconometricsPalgrave Macmillan, New York, pp 1251–1290Google Scholar
  24. Rey SJ, Sastré-Gutiérrez ML (2010) Interregional inequality dynamics in Mexico. Spatial Econ Anal 5(3):277–298CrossRefGoogle Scholar
  25. Schweizer B (1991) Thirty years of copulas. In: DallÁglio G, Kotz S, Aalinetti G (eds) Advances in probability distributions with given marginals. Kluwer, Dordrecth, pp 13–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations