Revisiting fitting monotone polynomials to data

Abstract

We revisit Hawkins’ (Comput Stat 9(3):233–247, 1994) algorithm for fitting monotonic polynomials and discuss some practical issues that we encountered using this algorithm, for example when fitting high degree polynomials or situations with a sparse design matrix but multiple observations per \(x\)-value. As an alternative, we describe a new approach to fitting monotone polynomials to data, based on different characterisations of monotone polynomials and using a Levenberg–Marquardt type algorithm. We consider different parameterisations, examine effective starting values for the non-linear algorithms, and discuss some limitations. We illustrate our methodology with examples of simulated and real world data. All algorithms discussed in this paper are available in the R Development Core Team (A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2011) package MonoPoly.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Bates D, Mullen KM, Nash JC, Varadhan R (2011) minqa: Derivative-free optimization algorithms by quadratic approximation. R package version 1.1.18/r530. URL http://R-Forge.R-project.org/projects/optimizer/

  2. Curtis SM, Ghosh SK (2011) A variable selection approach to monotonic regression with bernstein polynomials. J Appl Stat 38:961–976

    MathSciNet  Article  Google Scholar 

  3. Dette H, Neumeyer N, Pilz KF (2006) A simple nonparametric estimator of a strictly monotone regression function. Bernoulli 12(3):469–490

    MathSciNet  Article  MATH  Google Scholar 

  4. Dette H, Pilz KF (2006) A comparative study of monotone nonparametric kernel estimates. J Stat Comput Simul 76(1):41–56

    MathSciNet  Article  MATH  Google Scholar 

  5. Elphinstone CD (1983) A target distribution model for non-parametric density estimation. Commun Stat Theory Methods 12(2):161–198

    MathSciNet  Article  Google Scholar 

  6. Fausett LV (2003) Numerical methods: algorithms and applications. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Firmin L, Müller S, Rösler KM (2011) A method to measure the distribution of latencies of motor evoked potentials in man. Clin Neurophysiol 122:176–182

    Article  Google Scholar 

  8. Firmin L, Müller S, Rösler KM (2012) The latency distribution of motor evoked potentials in patients with multiple sclerosis. Clin Neurophysiol 123:2414–2421. doi:10.1016/j.clinph.2012.05.008

    Google Scholar 

  9. Friedman J, Hastie T, Höfling H, Tibshirani R (2007) Pathwise coordinate optimization. Ann Appl Stat 1(2):302–332

    MathSciNet  Article  MATH  Google Scholar 

  10. Friedman J, Hastie T, Tibshirani R (2010) Regularisation paths for generalized linear models via coordinate descent. J Stat Softw 33(1). URL http://www.jstatsoft.org/v33/i01/paper

  11. Friedman JH, Tibshirani R (1984) The monotone smoothing of scatterplots. Technometrics 26(3):243–250

    Article  Google Scholar 

  12. Goldfarb D, Idnani A (1982) Dual and Primal-Dual Methods for Solving Strictly Convex Quadratic Programs. In: Hennart JP (ed) Numerical analysis, Proceedings, Cocoyoc, Mexico 1981, vol 909., of lecture notes in mathematics. Springer, Berlin, pp 226–239

  13. Goldfarb D, Idnani A (1983) A numerically stable dual method for solving strictly convex quadratic programs. Math Program 27:1–33

    MathSciNet  Article  MATH  Google Scholar 

  14. Hall P, Huang LS (2001) Nonparametric kernel regression subject to monotonicity constraints. Ann Stat 29(3):624–647

    MathSciNet  Article  MATH  Google Scholar 

  15. Hawkins DM (1994) Fitting monotonic polynomials to data. Comput Stat 9(3):233–247

    MATH  Google Scholar 

  16. Hazelton ML, Turlach BA (2011) Semiparametric regression with shape constrained penalized splines. Comput Stat Data Anal 55(10):2871–2879. doi:10.1016/j.csda.2011.04.018

    MathSciNet  Article  MATH  Google Scholar 

  17. Heinzmann D (2008) A filtered polynomial approach to density estimation. Comput Stat 23(3):343–360. doi:10.1007/s00180-007-0070-z

    MathSciNet  Article  MATH  Google Scholar 

  18. Mammen E (1991) Estimating a smooth monotone regression function. Ann Stat 19(2):724–740

    MathSciNet  Article  MATH  Google Scholar 

  19. Mammen E, Marron JS, Turlach BA, Wand MP (2001) A general projection framework for constrained smoothing. Stat Sci 16(3):232–248. doi:10.1214/ss/1009213727

    MathSciNet  Article  MATH  Google Scholar 

  20. Marron JS, Turlach BA, Wand MP (1997) Local polynomial smoothing under qualitative constraints. In: Billard L, Fisher NI (eds) Graph-image-vision, vol 28 of computing science and statistics. Interface Foundation of North America, Inc., Fairfax Station, 22039–7460, pp 647–652. URL http://www.maths.uwa.edu.au/berwin/psfiles/interface96.pdf

  21. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313. doi:10.1093/comjnl/7.4.308

    Article  MATH  Google Scholar 

  22. Osborne MR (1976) Nonlinear least squares – the Levenberg algorithm revisited. J Aust Math Soc Ser B 19(3):343–357. doi:10.1017/S033427000000120X

    MathSciNet  Article  MATH  Google Scholar 

  23. Penttila TJ (2006) Personal communication.

  24. Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without derivatives. Report No. DAMTP 2009/NA06, Centre for Mathematical Sciences, University of Cambridge, Cambridge. http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

  25. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0. URL http://www.R-project.org/

  26. Ramsay JO (1998) Estimating smooth monotone functions. J R Stat Soc Ser B 60(2):365–375

    MathSciNet  Article  MATH  Google Scholar 

  27. Ramsay JO, Silverman BW (2002) Applied functional data analysis: methods and case studies. Springer, New York

    Google Scholar 

  28. Ramsay JO, Wickham H, Graves S, Hooker G (2012) FDA: functional data analysis. R package version 2.2.8. URL http://CRAN.R-project.org/package=fda

  29. Turlach BA (2005) Shape constrained smoothing using smoothing splines. Comput Stat 20(1):81–103. doi:10.1007/BF02736124

    MathSciNet  Article  MATH  Google Scholar 

  30. Turlach BA, Weingessel A (2011) quadprog: Functions to solve quadratic programming problems. S original by Turlach BA, R port by Weingessel A; R package version 1.5–4

Download references

Acknowledgments

We would like to thank the referees and editors for their helpful comments and suggestions. Samuel Müller was supported by a grant from the Australian Research Council (DP110101998).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin Murray.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murray, K., Müller, S. & Turlach, B.A. Revisiting fitting monotone polynomials to data. Comput Stat 28, 1989–2005 (2013). https://doi.org/10.1007/s00180-012-0390-5

Download citation

Keywords

  • Monotone polynomial
  • Monotone regression