# Nonlinear nonparametric mixed-effects models for unsupervised classification

Original Paper

First Online:

- 294 Downloads
- 5 Citations

## Abstract

In this work we propose a novel EM method for the estimation of nonlinear nonparametric mixed-effects models, aimed at unsupervised classification. We perform simulation studies in order to evaluate the algorithm performance and we apply this new procedure to a real dataset.

## Keywords

Mixed-effects models Nonparametric estimation EM algorithm Nonlinear models## Notes

### Acknowledgments

The case study in Sect. 4 is within the Strategic Program “Exploitation, integration and study of current and future health databases in Lombardia for Acute Myocardial Infarction” supported by “Ministero del Lavoro, della Salute e delle Politiche Sociali” and by “Direzione Generale Sanità - Regione Lombardia”.

## References

- Aitkin M (1996a) A general maximum likelihood analysis of overdispersion in generalized linear models. Stat Comput 6:251–262CrossRefGoogle Scholar
- Aitkin M (1999b) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55:117–128MathSciNetzbMATHCrossRefGoogle Scholar
- Antic J, Laffont CM, Chafaï D, Concordet D (2009) Comparison of nonparametric methods in nonlinear mixed effect models. Comput Stat Data Anal 53(3):642–656zbMATHCrossRefGoogle Scholar
- Davidian M, Gallant AR (1993) The nonlinear mixed effects model with a smooth random effects density. Biometrika 80(3):475–488MathSciNetzbMATHCrossRefGoogle Scholar
- De Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM, Paganoni AM, Maccario R, Zecca M, Locatelli F, Dellabona P, Casorati G (2011) Invariant natural killer T-cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state. J Immunol 186(7):4490–4499CrossRefGoogle Scholar
- Einbeck J, Darnell R, Hinde J (2009) npmlreg: Nonparametric maximum likelihood estimation for random effect models. [Online] http://CRAN.R-project.org/package=npmlreg
- Fox J (2002) Linear mixed models, appendix to an R and S-PLUS companion to applied regressionGoogle Scholar
- Gallant AR (1987) Nonlinear statistical models. Wiley, New YorkzbMATHCrossRefGoogle Scholar
- Gibbs AL, Su FE (2002) On choosing and bounding probability metrics. Int Stat Rev 70(3):419–435zbMATHCrossRefGoogle Scholar
- Goldstein H (1991) Nonlinear multilevel models, with an application to discrete response data. Biometrika 78(1):45–51MathSciNetCrossRefGoogle Scholar
- Hox JJ (1995) Applied multilevel analysis. TT-Publikaties, AmsterdamGoogle Scholar
- Ieva F, Paganoni AM, Secchi P (2012) Mining administrative health databases for epidemiological purposes: a case study on acute myocardial infarctions diagnoses. In: Pesarin F, Torelli S (eds) Accepted for publication in advances in theoretical and applied statistics. Springer, Berlin. [Online] http://mox.polimi.it/it/progetti/pubblicazioni/quaderni/45-2010.pdf
- Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effect models. Comput Stat Data Anal 49(4):1020–1038MathSciNetzbMATHCrossRefGoogle Scholar
- Lai TL, Shih MC (2003) Nonparametric estimation in nonlinear mixed-effects models. Biometrika 90(1): 1–13MathSciNetzbMATHCrossRefGoogle Scholar
- Lindsay BG (1983a) The geometry of mixture likelihoods: a general theory. Ann Stat 11(1):86–94MathSciNetzbMATHCrossRefGoogle Scholar
- Lindsay BG (1983b) The geometry of mixture likelihoods, part II: the exponential family. Ann Stat 11(3):783–792MathSciNetzbMATHCrossRefGoogle Scholar
- Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, New YorkzbMATHCrossRefGoogle Scholar
- R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. [Online] http://www.R-project.org
- Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Pharmacodyn 11(3):303–319Google Scholar
- Schumitzky A (1991) Nonparametric EM algorithms for estimating prior distributions. Appl Math Comput 45(2):143–157MathSciNetzbMATHCrossRefGoogle Scholar
- Vermunt JK (2004) An EM algorithm for the estimation of parametric and non-parametric hierarchical nonlinear models. Statistica Neerlandica 58(2):220–233Google Scholar
- Walker S (1996) An EM algorithm for nonlinear random effects models. Biometrics 52(3):934–944MathSciNetzbMATHCrossRefGoogle Scholar
- Wolfinger R (1993) Laplace’s approximation for nonlinear mixed models. Biometrika 80(4):791–795MathSciNetzbMATHCrossRefGoogle Scholar

## Copyright information

© Springer-Verlag 2012