Computational Statistics

, Volume 28, Issue 2, pp 565–580 | Cite as

Goodness-of-fit indices for partial least squares path modeling

Open Access
Original Paper

Abstract

This paper discusses a recent development in partial least squares (PLS) path modeling, namely goodness-of-fit indices. In order to illustrate the behavior of the goodness-of-fit index (GoF) and the relative goodness-of-fit index (GoFrel), we estimate PLS path models with simulated data, and contrast their values with fit indices commonly used in covariance-based structural equation modeling. The simulation shows that the GoF and the GoFrel are not suitable for model validation. However, the GoF can be useful to assess how well a PLS path model can explain different sets of data.

Keywords

Partial least squares path modeling (PLS) Goodness-of-fit index (GoF) 

JEL Classification

C39 

References

  1. Addinsoft SARL (2007–2008) XLSTAT-PLSPM. Paris, France. http://www.xlstat.com/en/products/xlstat-plspm/
  2. Akaike H (1987) Factor analysis and AIC. Psychometrika 52(3): 317–332MathSciNetMATHCrossRefGoogle Scholar
  3. Arbuckle JL (2003) Amos 5 User’s Guide. SPSSGoogle Scholar
  4. Bagozzi RP, Yi Y (1994) Advanced topics in structural equation models. In: Bagozzi RP (eds) Advanced methods of marketing research. Blackwell, Oxford, p 151Google Scholar
  5. Bass B, Avolio B, Jung D, Berson Y (2003) Predicting unit performance by assessing transformational and transactional leadership. J Appl Psychol 88(2): 207–218CrossRefGoogle Scholar
  6. Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 107(2): 238–246CrossRefGoogle Scholar
  7. Bollen KA (1989a) A new incremental fit index for general structural equation models. Sociol Methods Res 17(3): 303MathSciNetCrossRefGoogle Scholar
  8. Bollen KA (1989b) Structural equations with latent variables. Wiley, New York, NYMATHGoogle Scholar
  9. Chin W (2010) How to write up and report PLS analyses. In: EspositoVinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer, Heidelberg, pp 655–690CrossRefGoogle Scholar
  10. Chin WW, Newsted PR (1999) Structural equation modeling analysis with small samples using partial least squares. In: Hoyle RH (eds) Statistical strategies for small sample research. Sage, Thousand Oaks, CA, pp 334–342Google Scholar
  11. Chin WW, Marcolin BL, Newsted PR (2003) A partial least squares latent variable modeling approach for measuring interaction effects. Results from a Monte Carlo simulation study and an electronic-mail emotion/adopion study. Inf Syst Res 14(2): 189–217CrossRefGoogle Scholar
  12. Dijkstra TK (1981) Latent variables in linear stochastic models: reflections on “Maximum Likelihood” and “Partial Least Squares” methods. PhD thesis, Groningen University, Groningen, a second edition was published in 1985 by Sociometric Research FoundationGoogle Scholar
  13. Dijkstra TK (2010) Latent variables and indices: Herman Wold’s basic design and partial least squares. In: Vinzi VE, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods, and applications, computational statistics, vol II, Springer, Heidelberg, pp 23–46 (in print)Google Scholar
  14. Duarte P, Raposo M (2010) A PLS model to study brand preference: an application to the mobile phone market. In: EspositoVinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer, Heidelberg, pp 449–485CrossRefGoogle Scholar
  15. EspositoVinzi V, Trinchera L, Squillacciotti S, Tenenhaus M (2008) REBUS-PLS: A response-based procedure for detecting unit segments in PLS path modelling. Appl Stoch Models Bus Ind 24(5): 439–458MathSciNetCrossRefGoogle Scholar
  16. Esposito Vinzi V, Chin WW, Henseler J, Wang H (eds) (2010a) Handbook of partial least squares: concepts, methods and applications. Springer, HeidelbergGoogle Scholar
  17. Esposito Vinzi V, Trinchera L, Amato S (2010b) PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement. In: EspositoVinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer, Heidelberg, pp 47–82CrossRefGoogle Scholar
  18. Fornell C (1995) The quality of economic output: empirical generalizations about its distribution and relationship to market share. Market Sci 14(3): G203–G211CrossRefGoogle Scholar
  19. Fornell C, Bookstein FL (1982) Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. J Market Res 19(4): 440–452CrossRefGoogle Scholar
  20. Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. J Market Res 18(1): 39–50CrossRefGoogle Scholar
  21. Hair J, Sarstedt M, Ringle C, Mena J (2012) An assessment of the use of partial least squares structural equation modeling in marketing research. J Acad Market Sci (forthcoming)Google Scholar
  22. Hanafi M (2007) PLS path modelling: computation of latent variables with the estimation mode B. Comput Stat 22(2): 275–292MathSciNetMATHCrossRefGoogle Scholar
  23. Henseler J (2010) On the convergence of the partial least squares path modeling algorithm. Comput Stat 25(1): 107–120MathSciNetMATHCrossRefGoogle Scholar
  24. Henseler J, Ringle C, Sinkovics R (2009) The use of partial least squares path modeling in international marketing. Adv Int Market 20(2009): 277–319Google Scholar
  25. Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6(1): 1–55CrossRefGoogle Scholar
  26. Hulland J (1999) Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strateg Manag J 20(2): 195–204CrossRefGoogle Scholar
  27. Jöreskog KG, Sörbom D (1986) LISREL VI: Analysis of linear structural relationships by maximum likelihood and least squares methods. Scientific Software, Mooresville, INGoogle Scholar
  28. Krijnen W, Dijkstra T, Gill R (1998) Conditions for factor (in) determinacy in factor analysis. Psychometrika 63(4): 359–367MathSciNetCrossRefGoogle Scholar
  29. Lohmöller JB (1989) Latent variable path modeling with partial least squares. Physica, HeidelbergGoogle Scholar
  30. Monecke A, Leisch F (2012) semPLS: Structural equation modeling using partial least squares. J Stat Softw (forthcoming)Google Scholar
  31. Mulaik SA, James LR, van Alstine J, Bennett N, Lind S, Stilwell CD (1989) Evaluation of goodness-of-fit indices for structural equation models. Psychol Bull 105: 430–445CrossRefGoogle Scholar
  32. Paxton P, Curran P, Bollen K, Kirby J, Chen F (2001) Monte carlo experiments: design and implementation. Struct Equ Model 8(2): 287–312CrossRefGoogle Scholar
  33. Reinartz WJ, Haenlein M, Henseler J (2009) An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int J Res Market 26(4): 332–344CrossRefGoogle Scholar
  34. Rigdon EE (1998) Structural equation modeling. In: Marcoulides GA (ed) Modern methods for business research, Lawrence Erlbaum Associates. Mahwah, pp 251–294Google Scholar
  35. Rigdon EE, Ringle CM, Sarstedt M (2010) Structural modeling of heterogeneous data with partial least squares. In: Malhotra NK (ed) Review of marketing research, vol 7. Sharpe, pp 255–296Google Scholar
  36. Ringle C, Sarstedt M, Straub D (2012) A critical look at the use of pls-sem in mis quarterly. MIS Q 36(1): iii–xivGoogle Scholar
  37. Ringle CM, Wende S, Will A (2005) SmartPLS 2.0 M3. University of Hamburg, Hamburg, Germany. http://www.smartpls.de
  38. Sarstedt M, Ringle CM (2010) Treating unobserved heterogeneity in PLS path modelling: a comparison of FIMIX-PLS with different data analysis strategies. J Appl Stat 37(8): 1299–1318MathSciNetCrossRefGoogle Scholar
  39. Sarstedt M, Henseler J, Ringle CM (2011) Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. Adv Int Market 22: 195–218CrossRefGoogle Scholar
  40. Soft Modeling, Inc (1992–2002) PLS-Graph Version 3.0. Houston, TX. http://www.plsgraph.com
  41. Sosik J, Kahai S, Piovoso M (2009) Silver bullet or voodoo statistics. Group Organ Manag 34(1): 5CrossRefGoogle Scholar
  42. Steiger JH (1990) Structural model evaluation and modification: an interval estimation approach. Multivar Behav Res 25(2): 173–180MathSciNetCrossRefGoogle Scholar
  43. Tenenhaus A, Tenenhaus M (2011) Regularized generalized caconical correlation analysis. Psychometrika 76(2): 257–284MathSciNetMATHCrossRefGoogle Scholar
  44. Tenenhaus M, Amato S, Esposito Vinzi V (2004) A global goodness-of-fit index for PLS structural equation modelling. In: Proceedings of the XLII SIS scientific meeting. pp 739–742Google Scholar
  45. Tenenhaus M, Vinzi VE, Chatelin YM, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1): 159–205MATHCrossRefGoogle Scholar
  46. Wheaton B, Muthén B, Alwin DF, Summers GF (1977) Assessing reliability and stability in panel models. In: Heise D (eds) Sociological methodology. Jossey-Bass, Washington, DC, pp 84–136Google Scholar
  47. Wold HOA (1966) Non-linear estimation by iterative least squares procedures. In: David FN (eds) Research papers in statistics. Wiley, London, pp 411–444Google Scholar
  48. Wold HOA (1973) Nonlinear iterative partial least squares (NIPALS) modelling. Some current developments. In: Krishnaiah PR (ed) Proceedings of the 3rd international symposium on multivariate analysis, Dayton, OH. pp 383–407Google Scholar
  49. Wold HOA (1974) Causal flows with latent variables: partings of the ways in the light of NIPALS modelling. Eur Econ Rev 5(1): 67–86CrossRefGoogle Scholar
  50. Wold HOA (1982) Soft modelling: the basic design and some extensions. In: Jöreskog KG, Wold HOA (eds) Systems under indirect observation. Causality, structure, prediction, vol II. North-Holland, Amsterdam, New York, Oxford, pp 1–54Google Scholar
  51. Wold HOA (1985a) Partial least squares. In: Kotz S, Johnson NL (eds) Encyclopaedia of statistical sciences, vol 6. Wiley, New York, NY, pp 581–591Google Scholar
  52. Wold HOA (1985b) Partial least squares and LISREL models. In: Nijkamp P, Leitner H, Wrigley N (eds) Measuring the unmeasurable. Nijhoff, Dordrecht, Boston, Lancaster, pp 220–251Google Scholar
  53. Wold HOA (1989) Introduction to the second generation of multivariate analysis. In: Wold HOA (ed) Theoretical empiricism. A general rationale for scientific model-building. Paragon House, New York, pp VIII–XLGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute for Management ResearchRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Institute for Market-based Management, Munich School of ManagementLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations