Advertisement

Computational Statistics

, Volume 26, Issue 4, pp 699–710 | Cite as

Exploratory analysis of benchmark experiments an interactive approach

  • Manuel J. A. Eugster
  • Friedrich Leisch
Original Paper

Abstract

Visualization can help a lot to understand the huge amounts of data created in computer simulations and benchmark experiments. In Eugster et al. (Technical report 30, Institut für Statistik, Ludwig-Maximilians-Universität München, Germany 2008) we presented a comprehensive toolbox for exploration and inference on benchmark data, including the bench plot. This plot visualizes the behavior of the algorithms on the individual drawn learning and test samples according to a specific performance measure. In this paper we show that an interactive version of the bench plot can help to uncover details and relations unseen with the static version.

Keywords

Benchmark experiment Visualization Interactive data analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook D, Swayne DF (2007) Interactive and dynamic graphics for data analysis: with R and GGobi. Springer, BerlinMATHCrossRefGoogle Scholar
  2. Eugster MJA (2010) Benchmark: benchmark experiments toolbox. http://cran.r-project.org/package=benchmark, R package version 0.3
  3. Eugster MJA, Hothorn T, Leisch F (2008) Exploratory and inferential analysis of benchmark experiments. Technical Report 30, Institut für Statistik, Ludwig-Maximilians-Universität München, Germany, http://epub.ub.uni-muenchen.de/4134
  4. Eugster MJA, Leisch F (2008) Bench plot and mixed effects models: first steps toward a comprehensive benchmark analysis toolbox. In: Brito P (ed) Compstat 2008—proceedings in computational statistics, Physica Verlag, Heidelberg, Germany, pp 299–306Google Scholar
  5. Gouberman A, Urbanek S (2008) icp: interactive custom plots—customizable interactive Graphics for R. http://www.rosuda.org/iPlots/, R package version 1.1–0
  6. Hothorn T, Leisch F, Zeileis A, Hornik K (2005) The design and analysis of benchmark experiments. J Comput Graph Stat 14(3): 675–699MathSciNetCrossRefGoogle Scholar
  7. McNeil DR (1977) Interactive data analysis. Wiley, New YorkGoogle Scholar
  8. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0
  9. Unwin A, Volinsky C, Winkler S (2003) Parallel coordinates for exploratory modelling analysis. Comput Stat Data Analysis 43: 553–564MathSciNetMATHCrossRefGoogle Scholar
  10. Urbanek S (2009) Acinonyx: iPlots extreme. http://www.rforge.net/Acinonyx/, R package version 3.0–0
  11. Urbanek S, Theus M (2003) iPlots: high interaction graphics for R. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003)Google Scholar
  12. Urbanek S, Wichtrey T (2008) iplots: iPlots—interactive graphics for R. http://www.iPlots.org/, R package version 1.1–3
  13. Venables W, Ripley B (2002) Modern applied statistics with S, 4th edn. Springer, BerlinMATHGoogle Scholar
  14. Wickham H (2007) Meifly: models explored interactively. Website ASA sections on statistical computing and graphics (Student Paper Award Winner 2007), available online at http://stat-computing.org/awards/student/winners.html

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of StatisticsLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations