Computational Statistics

, Volume 24, Issue 2, pp 247–254 | Cite as

Interacting with local and remote data repositories using the stashR package

Original Paper


The stashR package (a Set of Tools for Administering Shared Repositories) for R implements a basic versioned key-value style database where character string keys are associated with data values. Using the S4 classes ‘localDB’ and ‘remoteDB’, and associated methods, versioned key-value databases can be either created locally on the user’s computer or accessed remotely via the Internet. The stashR package can enhance reproducible research by providing a ‘localDB’ database format for the caching of computations which can subsequently be stored on the Internet. To reproduce a particular computation, a reader can access the ‘remoteDB’ database and obtain the associated R objects.


Reproducible research Database Data distribution Version control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brahm DE (2002) Delayed data packages. R News 2(3): 11–12Google Scholar
  2. Gentleman R, Temple Lang D (2004) Statistical analyses and reproducible research. Technical Report 2, Bioconductor Project Working PapersGoogle Scholar
  3. Gentry J, Gentleman R (2004) reposTools: repository tools for R, R package Version 1.5.2.Google Scholar
  4. Leisch F (2002) Sweave: Dynamic generation of statistical reports using literate data analysis. In Härdle W, Rönz B (eds) Compstat 2002. Proceedings in computational statistics, pp 575–580. Physika Verlag, Heidelberg, ISBN 3-7908-1517-9Google Scholar
  5. Peng RD (2006) Interacting with data using the filehash package. R News 6(4): 19–24Google Scholar
  6. Peng RD, Dominici F, Zeger SL (2006) Reproducible epidemiologic research. Am J Epidemiol 163(9): 783–789. doi: 10.1093/aje/kwj093 CrossRefGoogle Scholar
  7. R Special Interest Group on Databases (R-SIG-DB) (2006) DBI: R Database Interface, R package Version 0.1-10Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Johns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations