Comparison of presmoothing methods in kernel density estimation under censoring

Abstract

The behavior of the presmoothed density estimator is studied when different ways to estimate the conditional probability of uncensoring are used. The Nadaraya–Watson, local linear and local logistic approach are compared via simulations with the classical Kaplan–Meier estimator. While the local logistic presmoothing estimator presents the best performance, the relative benefits of the local linear versus the Nadaraya–Watson estimator depend very much on the shape of some underlying functions.

This is a preview of subscription content, log in to check access.

References

  1. Cao R, Jácome MA (2004) Presmoothed kernel density estimator for censored data. J Nonparametr Stat 16:289–309

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao R, Cuevas A, González-Manteiga W (1994) A comparative study of several smoothing methods in density estimation. Comput Stat Data Anal 17:153–176

    Article  MATH  Google Scholar 

  3. Cao R, López-de-Ullibarri I, Janssen P, Veraverbeke N (2005) Presmoothed Kaplan–Meier and Nelson–Aalen estimators. J Nonparametr Stat 17:31–56

    Article  MathSciNet  MATH  Google Scholar 

  4. Cox DR, Snell EJ (1989) Analysis of binary date, 2nd edn. Chapman and Hall, London

    Google Scholar 

  5. Crowley J, Hu M (1977) Covariance analysis of heart transplant survival data. J Am Stat Assoc 72:27–36

    Article  Google Scholar 

  6. De Uña-Álvarez J, Rodríguez-Campos MC (2004) Strong consistency of presmoothed Kaplan–Meier integrals when covariables are present. Statistics 38:483–496

    MathSciNet  MATH  Google Scholar 

  7. Dikta G (1998) On semiparametric random censorship models. J Stat Plann Inference 66:253–279

    Article  MathSciNet  MATH  Google Scholar 

  8. Dikta G (2000) The strong law under semiparametric random censorship models. J Stat Plann Inference 83:1–10

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan J (1992) Design-adaptive nonparametric regression. J Am Stat Assoc 87:998–1004

    Article  MATH  Google Scholar 

  10. Fan J (1993) Local linear regression smoothers and their minimax efficiency. Ann Stat 21:196–216

    Article  MATH  Google Scholar 

  11. Fan J, Gijbels I (1992) Variable bandwidth and local linear regression smoothers. Ann Stat 20:2008–2036

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, London

    Google Scholar 

  13. Fan J, Farmen M, Gijbels I (1998) Local maximum likelihood estimation and inference. J R Stat Soc B 60:591–608

    Article  MathSciNet  MATH  Google Scholar 

  14. Hall P, Wolff RCL, Wao Q (1999) Methods for estimating a conditional distribution function. J Am Stat Assoc 94:154–163

    Article  MATH  Google Scholar 

  15. Jácome MA, Cao R (2007a) Almost sure asymptotic representation for the presmoothed distribution and density estimators for censored data. Statistics (to appear)

  16. Jácome MA, Cao R (2007b) Bandwidth selection for the presmoothed density estimator with censored data. Submitted, available at http://www.udc.es/dep/mate/Dpto_Matematicas/Investigacion/ ie_publicacion/Jacome_Cao_BSPDE.pdf

  17. Kalbfleisch JD, Prentice RL (1980) The statistical analysis of failure time data. Wiley, New York

    Google Scholar 

  18. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MathSciNet  MATH  Google Scholar 

  19. Koziol JA, Green SB (1976) A Cramer-von Mises statistic for randomly censored data. Biometrika 63:465–481

    MathSciNet  MATH  Google Scholar 

  20. Miller RG, Halpern J (1982) Regression with censored data. Biometrika 69:521–531

    Article  MathSciNet  MATH  Google Scholar 

  21. Nadaraya EA (1964) On estimating regression. Theor Probab Appl 10:186–190

    Article  Google Scholar 

  22. Ruppert D, Wand MP (1994) Multivariate weighted least squares regression. Ann Stat 22:1346–1370

    Article  MathSciNet  MATH  Google Scholar 

  23. Sánchez-Sellero C, González-Manteiga W, Cao R (1999) Bandwidth selection in density estimation with truncated and censored data. Ann Inst Stat Math 51:51–70

    Article  MATH  Google Scholar 

  24. Stone M (1975) Cross-validatory choice and assessment of statistical predictions (with discussion). J R Stat Soc Ser B 36:111–147

    Google Scholar 

  25. Watson GS (1964) Smooth regression analysis. Shankya Ser A 26:359–372

    MATH  Google Scholar 

  26. Ziegler S (1995) Ein modifizierter Kaplan–Meier Sch ätzer. Diploma dissertation, Mathematisches Institut, Justus-Liebig-Universität Gießen

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Jácome.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jácome, M.A., Gijbels, I. & Cao, R. Comparison of presmoothing methods in kernel density estimation under censoring. Comput Stat 23, 381–406 (2008). https://doi.org/10.1007/s00180-007-0076-6

Download citation

Keywords

  • Censored data
  • Kaplan–Meier estimator
  • Local linear fit
  • Nadaraya–Watson smoother
  • Survival analysis