Computational Statistics

, Volume 22, Issue 3, pp 481–496 | Cite as

Robust estimation and classification for functional data via projection-based depth notions

  • Antonio CuevasEmail author
  • Manuel Febrero
  • Ricardo Fraiman
Original Paper


Five notions of data depth are considered. They are mostly designed for functional data but they can be also adapted to the standard multivariate case. The performance of these depth notions, when used as auxiliary tools in estimation and classification, is checked through a Monte Carlo study.


Depth measures Functional data Projections method Supervised classification 

Mathematics Subject Classification (2000)

Primary 62G07 Secondary 62G20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biau G, Bunea F, Wegkamp M (2005) Functional classification in Hilbert spaces. IEEE Trans Inf Theory 51:2163–2172CrossRefMathSciNetGoogle Scholar
  2. Cérou F, Guyader A (2005) Nearest neighbor classification in infinite dimension. PreprintGoogle Scholar
  3. Cuesta-Albertos JA, Fraiman R, Ransford T (2006a) A sharp form of the Cramer–Wold theorem. J Theor Probab (in press)Google Scholar
  4. Cuesta-Albertos JA, Fraiman R, Ransford T (2006b) Random projections and goodness-of-fit tests in infinite-dimensional spaces. Boletim da Sociedade Brasileira de Matematica 37:1–25MathSciNetGoogle Scholar
  5. Cuevas A, Febrero M, Fraiman R (2006) On the use of the bootstrap for estimating functions with functional data. Comput Stat Data Anal 51:1063–1074CrossRefzbMATHMathSciNetGoogle Scholar
  6. Devroye L, Györfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Springer, HeidelbergzbMATHGoogle Scholar
  7. Donoho DL (1982) Breakdown properties of multivariate location estimators. Ph.D. qualifying paper, Dept. Statist., Harvard UniversityGoogle Scholar
  8. Ferraty F, Vieu P (2003) Curves discrimination: a nonparametric functional approach. Comput Stat Data Anal 44:161–173CrossRefzbMATHMathSciNetGoogle Scholar
  9. Ferraty F, Vieu P (2006) Nonparametric modelling for functional data. Springer, HeidelbergGoogle Scholar
  10. Fishman GS (1996) Monte Carlo: concepts, algorithms and applications. Springer, HeidelbergzbMATHGoogle Scholar
  11. Fraiman R, Meloche J (1999) Multivariate L-estimation. Test 8:255–317zbMATHCrossRefMathSciNetGoogle Scholar
  12. Fraiman R, Muniz G (2001) Trimmed means for functional data. Test 10:419–440zbMATHCrossRefMathSciNetGoogle Scholar
  13. Ghosh AK, Chaudhuri P (2005) On data depth and distribution-free discriminant analysis using separating surfaces. Bernoulli 11:1–27zbMATHCrossRefMathSciNetGoogle Scholar
  14. Hastie T, Buja A, Tibshirani R (1995) Penalized discriminant analysis. Ann Stat 23:73–102zbMATHMathSciNetGoogle Scholar
  15. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Data mining, inference, and prediction. Springer, New YorkzbMATHGoogle Scholar
  16. James GM, Hastie TJ (2001) Functional linear discriminant analysis for irregularly sampled curves. J R Stat Soc B 63:533–550zbMATHCrossRefMathSciNetGoogle Scholar
  17. Liu RY (1990) On a notion of data depth based on random simplices. Ann Stat 18:405–414zbMATHGoogle Scholar
  18. Liu RY, Parelius JM, Singh K (1999) Multivariate analysis by data depth: descriptive statistics, graphics and inference. With discussion and a reply by the authors. Ann Stat 27:783–858zbMATHMathSciNetGoogle Scholar
  19. Ramsay JO, Silverman BW (2002) Applied functional data analysis. Methods and case studies. Springer, New YorkzbMATHGoogle Scholar
  20. Ramsay JO, Silverman BW (2005a) Applied functional data analysis. Springer, HeidelbergGoogle Scholar
  21. Ramsay JO, Silverman BW (2005b) Functional data analysis, 2nd edn. Springer, HeidelbergGoogle Scholar
  22. Rousseeuw PJ, Hubert M (1999) Regression depth (with discussion). J Am Stat Assoc 94:388–433zbMATHCrossRefMathSciNetGoogle Scholar
  23. Stone CJ (1977) Consistent nonparametric regression. With discussion and a reply by the author. Ann Stat 5:595–645zbMATHGoogle Scholar
  24. Tukey JW (1975) Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, pp 523–531. Canad. Math. Congress, MontrealGoogle Scholar
  25. Zuo Y (2003) Projection based depth functions and associated medians. Ann Stat 31:1460–1490zbMATHCrossRefMathSciNetGoogle Scholar
  26. Zuo Y, Serfling R (2000) General notions of statistical depth function. Ann Stat 28:461–482zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Antonio Cuevas
    • 1
    Email author
  • Manuel Febrero
    • 2
  • Ricardo Fraiman
    • 3
  1. 1.Departamento de MatemáticasUniv. Autónoma de MadridMadridSpain
  2. 2.Departamento de Estatística e Inv. OperativaUniv. de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Departamento de MatemáticaUniv. de San AndrésBuenos AiresArgentina

Personalised recommendations