Computational Statistics

, Volume 21, Issue 1, pp 53–62 | Cite as

A fast algorithm for balanced sampling

  • Guillaume Chauvet
  • Yves Tillé
Article

Summary

The cube method (Deville & Tillé 2004) is a large family of algorithms that allows selecting balanced samples with equal or unequal inclusion probabilities. In this paper, we propose a very fast implementation of the cube method. The execution time does not depend on the square of the population size anymore, but only on the population size. Balanced samples can thus be selected in very large populations of several hundreds of thousands of units.

Keywords

algorithm of balanced sampling auxiliary variables balanced sampling sampling design unequal probabilities sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertrand, P., Christian, B., Chauvet, G. & Grosbras, J.-M. (2004), Plans de sondage pour le recensement rénové de la population, in ‘Séries INSEE Méthodes: Actes des Journées de Méthodologie Statistique’, Paris: INSEE, to appear, Paris.Google Scholar
  2. Deville, J.-C. & Tillé, Y. (1998), ‘Unequal probability sampling without replacement through a splitting method’, Biometrika 85, 89–101.MATHMathSciNetCrossRefGoogle Scholar
  3. Deville, J.-C. & Tillé, Y. (2004), ‘Efficient balanced sampling: the cube method’, Biometrika 91, 893–912.MATHMathSciNetCrossRefGoogle Scholar
  4. Deville, J.-C. & Tillé, Y. (2005), ‘Variance approximation under balanced sampling’, Journal of Statistical Planning and Inference 128, 411–425.MathSciNetCrossRefGoogle Scholar
  5. Dumais, J. & Isnard, M. (2000), Le sondage de logements dans les grandes communes dans le cadre du recensement rénové de la population, in ‘Séries INSEE Méthodes: Actes des Journées de Méthodologie Statistique’, Vol. 100, pp. 37–76, Paris: INSEE, Paris, pp. 37–76.Google Scholar
  6. Royall, R. & Herson, J. (1973), ‘Robust estimation in finite populations I’, Journal of the American Statistical Association 68, 880–889.MATHMathSciNetCrossRefGoogle Scholar
  7. Scott, A., Brewer, K. & Ho, E. (1978), ‘Finite population sampling and robust estimation’, Journal of American Statistical Association 73, 359–361.MathSciNetCrossRefGoogle Scholar
  8. Tillé, Y. (2001), Théorie des sondages: échantillonnage et estimation en populations finies, Dunod, Paris.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Guillaume Chauvet
    • 1
  • Yves Tillé
    • 2
  1. 1.Laboratoire de Statistique d'EnquêteCREST-ENSAIBruzFrance
  2. 2.Statistics GroupUniversity of NeuchâtelNeuchtelSwitzerland

Personalised recommendations