Skip to main content
Log in

A new β-SiAlON ceramic tool prepared by microwave sintering and its cutting performance in high-speed dry machining Inconel718

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new β-SiAlON ceramic tool with satisfactory cutting performance was prepared by microwave sintering. Effects of sintering additives and sintering process on mechanical properties and microstructure of the β-SiAlON ceramic tool were studied. Cutting performance of the tool was evaluated by high-speed milling Inconel718. The β-SiAlON ceramic tool with 5 wt% Y2O3 + 0.5 wt% Yb2O3 sintering additives possessed the homogeneous microstructure and best mechanical properties, but the transformation of plate-like grain to columnar grain was restrained as the content of Yb2O3 exceeded 1 wt%. The β-SiAlON ceramic tool was prepared at 1600 °C with the holding time of 5 min. Compared with conventional sintering technologies, the holding time was reduced by more than 90%. The highest material removal volume was obtained at vc = 800 m/min, ap = 1 mm, and fz = 0.05 mm/z, which was 5 times more than that of commercial coated tool. The main failure mechanisms of the tool were adhesive wear and cutting edge fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jack KH (1976) Sialons and related nitrogen ceramics. J Mater Sci 11:1135–1158. https://doi.org/10.1007/bf00553123

    Article  Google Scholar 

  2. Senkov ON, Isheim D, Seidman DN, Pilchak AL (2016) Development of a refractory high entropy superalloy. Entropy 18:1–13. https://doi.org/10.3390/e18030102

    Article  Google Scholar 

  3. Çelik A (2018) Dopant-dependent diffusion behavior of SiAlON ceramics against Inconel 718 superalloy. Ceram Int 44:17440–17446. https://doi.org/10.1016/j.ceramint.2018.06.211

    Article  Google Scholar 

  4. Liu M, Nemat-Nasser S (1998) The microstructure and boundary phases of in-situ reinforced silicon nitride. Mater Sci Eng A 254:242–252. https://doi.org/10.1016/s0921-5093(98)00679-0

    Article  Google Scholar 

  5. Li YW, Wang PL, Chen WW, Cheng YB, Yan DS (2001) Effect of additives on microstructure of Ca α-sialon. Mater Lett 47:281–285. https://doi.org/10.1016/S0167-577X(00)00250-0

    Article  Google Scholar 

  6. Acikbas NC, Yurdakul H, Mandal H, Kara F, Turan S, Kara A, Bitterlich B (2012) Effect of sintering conditions and heat treatment on the properties, microstructure and machining performance of α-β-SiAlON ceramics. J Eur Ceram Soc 32:1321–1327. https://doi.org/10.1016/j.jeurceramsoc.2011.11.030

    Article  Google Scholar 

  7. Ewing HC, Yang S (2011) The effect of precursor composition and sintering additives on the formation of β-sialon from Al, Si and Al2O3 powders. Ceram Int 37:1667–1673. https://doi.org/10.1016/j.ceramint.2011.01.041

    Article  Google Scholar 

  8. Lan YL, Li JQ, Chen QZ, Zhang CH, Li Y, Liu FS, Ao WQ (2020) Mechanical properties and thermal conductivity of dense β-SiAlON ceramics fabricated by two-stage spark plasma sintering with Al2O3-AlN-Y2O3 additives. J Eur Ceram Soc 40:12–18. https://doi.org/10.1016/j.jeurceramsoc.2019.09.013

    Article  Google Scholar 

  9. Çalişkan F, Tatli Z, Genson A, Hampshire S (2012) Pressureless sintering of β-SiAlON ceramic compositions using fluorine and oxide additive system. J Eur Ceram Soc 32:1337–1342. https://doi.org/10.1016/j.jeurceramsoc.2011.05.016

    Article  Google Scholar 

  10. Eser O, Kurama S, Gunkaya G (2010) The production of β-SiAlON ceramics with low amounts of additive, at low sintering temperature. J Eur Ceram Soc 30:2985–2990. https://doi.org/10.1016/j.jeurceramsoc.2010.01.024

    Article  Google Scholar 

  11. CalisAcikbas N, Yurdakul H, Mandal H, Kara F, Turan S, Kara A, Bitterlich B (2012) Effect of sintering conditions and heat treatment on the properties, microstructure and machining performance of α-β-SiAlON ceramics. J Eur Ceram Soc. 32:1321–1327. https://doi.org/10.1016/j.jeurceramsoc.2011.11.030

    Article  Google Scholar 

  12. Cao L, Wang Z, Yin Z, Liu K, Yuan J (2018) Investigation on mechanical properties and microstructure of silicon nitride ceramics fabricated by spark plasma sintering. Mater Sci Eng A 731:595–602. https://doi.org/10.1016/j.msea.2018.06.093

    Article  Google Scholar 

  13. Yang JF, Deng ZY, Ohji T (2003) Fabrication and characterisation of porous silicon nitride ceramics using Yb2O3 as sintering additive. J Eur Ceram Soc 23:371–378. https://doi.org/10.1016/S0955-2219(02)00175-9

    Article  Google Scholar 

  14. Reddy KM, Saha BP (2019) Effect of porosity on the structure and properties of β-SiAlON ceramics. J Alloys Compd 779:590–598. https://doi.org/10.1016/j.jallcom.2018.11.277

    Article  Google Scholar 

  15. Çalişkan F (2014) Improvement in sinterability of β-SiAlON produced from kaolin. J Alloys Compd 602:140–149. https://doi.org/10.1016/j.jallcom.2014.03.016

    Article  Google Scholar 

  16. Zhang C, Janssen R, Claussen N (2003) Pressureless sintering of β-sialon with improved green strength by using metallic Al powder. Mater Lett 57:3352–3356. https://doi.org/10.1016/S0167-577X(03)00073-9

    Article  Google Scholar 

  17. Wang X, Gong H, Zhang Y, Feng Y, Zhang L, Zhao Y (2015) Effect of AlN content on properties of hot-press sintered Sialon ceramics. Ceram Int 41:4308–4311. https://doi.org/10.1016/j.ceramint.2014.11.118

    Article  Google Scholar 

  18. Chen Y, Fan B, Yang B, Ma W, Liu G, Li H (2019) Microwave sintering and fracture behavior of zirconia ceramics. Ceram Int 45:17675–17680. https://doi.org/10.1016/j.ceramint.2019.05.334

    Article  Google Scholar 

  19. Chen G, Li K, Jiang Q, Li X, Peng J, Omran M, Chen J (2020) Microstructure and enhanced volume density properties of FeMn78C8.0 alloy prepared via a cleaner microwave sintering approach. J Clean Prod 262:121364. https://doi.org/10.1016/j.jclepro.2020.121364

    Article  Google Scholar 

  20. Zhan H, Zhang N, Wu D, Wu Z, Bi S, Ma B, Liu W (2019) Controlled synthesis of β-SiC with a novel microwave sintering method. Mater Lett 255:126586. https://doi.org/10.1016/j.matlet.2019.126586

    Article  Google Scholar 

  21. Chockalingam S, Traver HK (2010) Microwave sintering of β-SiAlON-ZrO2 composites. Mater Des 31:3641–3646. https://doi.org/10.1016/j.matdes.2010.02.042

    Article  Google Scholar 

  22. Panneerselvam M, Rao KJ (2003) A microwave method for the preparation and sintering of β’-SiAlON. Mater Res Bull 38:663–674. https://doi.org/10.1016/S0025-5408(02)01071-1

    Article  Google Scholar 

  23. Evans AG, Charles EA (1976) Fracture toughness determinations by indentation. J Amer Ceram Soc 59:371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

    Article  Google Scholar 

  24. Basu B, Kumar R, CalisAcikbas N, Kara F, Mandal H (2009) Microstructure–mechanical properties–wear resistance relationship of SiAlON ceramics. Metall and Mater Trans A 40:2319–2332. https://doi.org/10.1007/s11661-009-9930-1

    Article  Google Scholar 

  25. Mehrotra PK High Z SiAlON and cutting tools made therefrom and method of using, International Application Published Under the Patent Cooperation Treaty (PCT), WO 94/12317,9 06 1994

  26. Ramesh R, Pomeroy MJ (1993) Effect of z value on densification and properties of SiAlON–SiC matrices and composites. Key Eng Mater 86–87:271–278. https://doi.org/10.4028/www.scientific.net/KEM.86-87.271

    Article  Google Scholar 

  27. Mukerji J, Prakash J (1998) Wear of nitrogen ceramics and composites in contact with bearing steel under oscillating sliding condition. Ceram Int 24:19–24. https://doi.org/10.1016/S0272-8842(96)00070-3

    Article  Google Scholar 

  28. Acikbas NC, Kara F (2017) The effect of z value on intergranular phase crystallization of αı/βı-SiAlON-TiN composites[J]. J Eur Ceram Soc 37(3):923–930. https://doi.org/10.1016/j.jeurceramsoc.2016.10.006

    Article  Google Scholar 

  29. Calis AN, Demir O (2013) The effect of cation type, intergranular phase amount and cation mole ratios on z value and intergranular phase crystallization of SiAlON ceramic. Ceram Int 39:3249–3259. https://doi.org/10.1016/j.ceramint.2012.10.013

    Article  Google Scholar 

  30. Qiu X, Pan W, Zhou Y et al (2007) Microwave synthesis of β-Sialon. Rare Met Mater Eng 36:354–358. https://doi.org/10.1145/169725.169716

    Article  Google Scholar 

  31. Nekouee KA, Khosroshahi RA (2016) Preparation and characterization of β-SiAlON/TiN nanocomposites sintered by spark plasma sintering and pressureless sintering. Mater Design 112:419–428. https://doi.org/10.1016/j.matdes.2016.09.090

    Article  Google Scholar 

  32. Çalışkan F (2014) Improvement in sinterability of β-SiAlON produced from kaolin. J Alloy Compd 602:140–149. https://doi.org/10.1016/j.jallcom.2014.03.016

    Article  Google Scholar 

  33. Sun X, Sun K, Du M, Wang W, Li A (2012) Effect of Al2O3 and Fe3Al on the phase formation and mechanical properties of β-sialon. Mater Des 39:373–378. https://doi.org/10.1016/j.matdes.2012.02.025

    Article  Google Scholar 

  34. Yi X, Watanabe K, Akiyama T (2010) Fabrication of dense β-SiAlON by a combination of combustion synthesis (CS) and spark plasma sintering (SPS). Intermetallics 18:536–541. https://doi.org/10.1016/j.intermet.2009.10.004

    Article  Google Scholar 

Download references

Funding

The work is supported by National Natural Science Foundation of China (51875291 and 52075266), Excellent Youth Fund of Jiangsu Province (BK20190070), Jiangsu Provincial Six Talent Peaks Project (GDZB-016), and Fundamental Research Funds for the Central Universities (30920032206).

Author information

Authors and Affiliations

Authors

Contributions

Zengbin Yin (first author, corresponding author): research thought, results analysis, writing the paper. Xiaohua Hao: ceramic tool preparation, characterization. Haohui Peng: cutting test and analysis. Juntang Yuan: resources. The author’s contribution corresponds their order. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zengbin Yin.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable. All data in this paper can be published and verified by all authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Hao, X., Peng, H. et al. A new β-SiAlON ceramic tool prepared by microwave sintering and its cutting performance in high-speed dry machining Inconel718. Int J Adv Manuf Technol 118, 3105–3117 (2022). https://doi.org/10.1007/s00170-021-08170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08170-4

Keywords

Navigation