Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation into the effect of wheel groove depth and width on grinding performance in creep-feed grinding

  • 42 Accesses

Abstract

This work presents an investigation into the effects of different groove depths and groove widths on grinding performance in creep-feed grinding using grinding wheels with spiral-shaped circumferential grooves inscribed around their surface. These grooves had constant widths of 3.2 mm and 1.7 mm, respectively, allowing for the decoupling of groove depth effects from groove width effects. Force, power, and surface roughness data was acquired for each experiment. There were only small differences between the results for force, power, and workpiece surface roughness for both groove widths. It was found that the grinding forces and spindle power initially decreased with increasing groove depth but the reductions in forces and power decreased and eventually leveled off as groove depths increased. For the experimental conditions of this research, it was found that there is little benefit in grooving deeper than ~ 400 μm. Groove depth did not appear to influence workpiece surface roughness significantly. The changes in grinding performance observed at different groove depths were attributed to changes in coolant flow. It was discovered that the coolant-induced force resulting from hydrodynamic pressure in the grinding zone decreased with respect to increasing groove depth up until about 400 μm which is consistent with the results observed for forces and power. The decrease in coolant-induced force signifies an increase in useful flowrate which was believed to be responsible for the improved grinding performance observed at different groove depths.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Li HN, Axinte D (2016) Textured grinding wheels: a review. Int J Mach Tool Manu 109:8–35

  2. 2.

    Forbrigger C, Bauer R, Warkentin A (2017) A review of state-of-the-art vitrified bond grinding wheel grooving processes. Int J Adv Manuf Technol 90(5–8):2207–2216

  3. 3.

    Verkerk J. (1979) Slotted wheels to avoid cracks in precision grinding. 1979 Proceedings: Sixteenth Annual Abrasive Engineering Society Conference/Exhibition, 75–81

  4. 4.

    Uhlmann E, Hochschild L (2013) Tool optimization for high speed grinding. J Prod Eng 7(2–3):185–193

  5. 5.

    Azarhoushang B, Daneshi A, Lee DH (2017) Evaluation of thermal damages and residual stresses in dry grinding by structured wheels. J Clean Prod 142:1922–1930

  6. 6.

    Koklu U (2014) Grinding with helically grooved wheels. P I Mech Eng E-J Pro 228(1):33–42

  7. 7.

    Fu YC, Xu HJ, Xu JH (2002) Optimization design of grinding wheel topography for high efficiency grinding. J Mater Process Technol 129:118–122

  8. 8.

    Mohamed AMO, Bauer R, Warkentin A (2013) Application of shallow circumferential grooved wheels to creep-feed grinding. J Mater Process Technol 213(5):700–706

  9. 9.

    Aurich JC, Kirsch B (2013) Improved coolant supply through slotted grinding wheel. CIRP Ann-Manuf Technol 62(1):363–366

  10. 10.

    Mohamed AMO, Warkentin A, Bauer R (2017) Prediction of workpiece surface texture using circumferentially grooved grinding wheels. Int J Adv Manuf Technol 89(1–4):1149–1160

  11. 11.

    Mohamed AMO, Bauer R, Warkentin A (2014) A novel method for grooving and re-grooving aluminum oxide grinding wheels. Int J Adv Manuf Technol 73(5–8):715–725

  12. 12.

    Forbrigger C, Warkentin A, Bauer R (2018) Improving the performance of profile grinding wheels with helical grooves. Int J Adv Manuf Technol 97:2331–2340

  13. 13.

    McDonald A, Bauer R, Warkentin A (2016) Design and validation of a grinding wheel optical scanner system to repeatedly measure and characterize wheel surface topography. Measurement 93:541–551

  14. 14.

    Malkin S (1989) Grinding technology and applications of machining with abrasives. SME, Dearborn

  15. 15.

    Gviniashvili ÃVK, Woolley NH, Rowe WB (2004) Useful coolant flowrate in grinding. Int J Mach Tool Manu 44:629–636

  16. 16.

    Brinksmeier E, Heinzel C, Wittmann M (1999) Friction, cooling and lubrication in grinding. CIRP Ann-Manuf Technol 48(2):581–598

  17. 17.

    Vesali A, Tawakoli T (2014) Study on hydrodynamic pressure in grinding contact zone considering grinding parameters and grinding wheel specifications. Procedia CIRP 14:13–18

  18. 18.

    Hwang Y, Kim GH, Kim YB, Kim JH, Lee SK (2016) Suppression of the inflection pattern in ultraprecision grinding through the minimization of the hydrodynamic force using a toothed wheel. Int J Mach Tool Manu 100:105–115

  19. 19.

    Gviniashvili VK, Webster J, Rowe WB (2005) Fluid flow and pressure in the grinding wheel-workpiece interface. J Manuf Sci E-T ASME 127(1):198–205

  20. 20.

    Chong-Ching C (1997) An application of lubrication theory to predict useful flow-rate of coolants on grinding porous media. Tribol Int 30(8):575–581

  21. 21.

    Klocke F, Baus A, Beck T (2000) Coolant induced forces in CBN high speed grinding with shoe nozzles. CIRP Ann-Manuf Technol 49(1):241–244

Download references

Funding

The authors received financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Foundation for Innovation (CFI).

Author information

Correspondence to R. Bauer.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riebel, A., Bauer, R. & Warkentin, A. Investigation into the effect of wheel groove depth and width on grinding performance in creep-feed grinding. Int J Adv Manuf Technol 106, 4401–4409 (2020). https://doi.org/10.1007/s00170-020-04933-7

Download citation

Keywords

  • Grinding
  • Circumferentially grooved wheel
  • Groove depth
  • Groove width
  • Creep feed