Stability of micro dry wire EDM: OFAT and DOE method

  • Asfana Banu
  • Mohammad Yeakub AliEmail author
  • Mohamed Abdul Rahman
  • Mohamed Konneh


Micro dry wire electrical discharge machining (μDWEDM) is an environmental-friendly machining process where gas is used as the dielectric fluid instead of liquid. In this process, certain modifications of wire electrical discharge machining (WEDM) are required during the machining operation for stable machining. In μDWEDM, the process is considered stable if the machining is continuous without any interruption due to wire breakage or wire lag. However, in the present state of the arts, stable and smooth machining process using μDWEDM remains a critical issue. Hence, the objectives of this research are to establish a stable μDWEDM process using two different experimental approaches: one-factor-at-a-time (OFAT) and design of experiment (DOE) method. The investigation was performed on a stainless steel (SS304) with a tungsten wire as the electrode using integrated multi-process machine tool, DT 110 (Mikrotools Inc., Singapore). Types of dielectric fluid, dielectric fluid pressure, polarity, threshold voltage, wire tension, wire feed rate, wire speed, gap voltage, and capacitance were the controlled parameters. The machining length of the microchannels was measured using scanning electron microscope (SEM) (JEOL JSM-5600, Japan). Analysis based on these two experimental approaches shows that stable μDWEDM process is achievable when the types of dielectric fluid, dielectric fluid pressure, polarity, threshold voltage, wire tension, wire feed rate, and wire speed remain as the fixed parameters while the capacitance and gap voltage remain as the controlled parameters.


Dry EDM DEDM DWEDM μDWEDM OFAT DOE Plackett-Burman design 



The authors are thankful to the faculty and staff of the Micromanufacturing laboratory and Metallographic laboratory at IIUM for their support.

Funding information

This research was funded by MOSTI under Research Grant SF15-016-0066.


  1. 1.
    Liao YS, Chen ST, Lin CS (2005) Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts. J Micromech Microeng 15:245–253CrossRefGoogle Scholar
  2. 2.
    Yoo HK, Kwon WT, Kang S (2014) Development of a new electrode for micro-electrical discharge machining (EDM) using Ti(C,N)-based cermet. Int J Precis Eng Manuf 15(4):609–616CrossRefGoogle Scholar
  3. 3.
    Hoang KT, Yang SH (2013) A study on the effect of different vibration-assisted methods in micro-WEDM. J Mater Process Technol 213:1616–1622CrossRefGoogle Scholar
  4. 4.
    Hoang KT, Yang SH (2015) A new approach for micro-WEDM control based on real-time estimation of material removal rate. Int J Precis Eng Manuf 16(2):241–246CrossRefGoogle Scholar
  5. 5.
    Debroy A, Chakraborty S (2013) Non-conventional optimization techniques in optimizing non-traditional machining processes: a review. Manag Sci Lett 3(1):23–38CrossRefGoogle Scholar
  6. 6.
    Yan MT (2010) An adaptive control system with self-organizing fuzzy sliding mode control strategy for micro wire-EDM machines. Int J Adv Manuf Technol 50:315–328CrossRefGoogle Scholar
  7. 7.
    Pour GT, Pour YT, & Ghoreishi M (2014) Electro-spark nanomachining process simulation. Int J Mater Mech Manuf, 2 (1)Google Scholar
  8. 8.
    Pour GT, Pour YT, Ghoreishi M (2014) Thermal model of the electro-spark nanomachining process. Int J Mater Mech Manuf 2(1):56–59Google Scholar
  9. 9.
    Banu A, Ali MY (2016) Electrical discharge machining (EDM): a review. Int J Eng Mater Manuf 1(1):3–10Google Scholar
  10. 10.
    Banu A, Ali MY, Rahman MA, Konneh M (2019) Investigation of process parameters for stable micro dry wire electrical discharge machining. Int J Adv Manuf Technol 103(1–4):723–741CrossRefGoogle Scholar
  11. 11.
    Azhiri RB, Teimouri R, Baboly MG, Laseman Z (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modelling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71(1):279–295CrossRefGoogle Scholar
  12. 12.
    Pandey A, Singh S (2010) Current research trends in variants of electrical discharge machining: a review. Int J Eng Sci Technol 2(6):2172–2191Google Scholar
  13. 13.
    Ali MY, Banu A, Rahman MA, Hazza M, Adesta EYT (2018) Precision control of kerf in metal cutting using dry micro WEDM: issues and challenges. Key Eng Mater 775:49–505CrossRefGoogle Scholar
  14. 14.
    Leao FN, Pashby IR (2004) A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149:341–346CrossRefGoogle Scholar
  15. 15.
    Ghodsiyeh D, Moradi M (2015) Wire electrical discharge machining. In: Jahan MP (ed) Electrical discharge machining (EDM) types, technologies and applications. Nova Science Publishers, Inc., New York, pp 33–65Google Scholar
  16. 16.
    Wani YB, Patil DD (2017) An experimental design approach for optimization of spectrophotometric method for estimation of cefixime trihydrate using ninhydrin as derivatizing reagent in bulk and pharmaceutical formulation. J Saudi Chem Soc 21:S101–S111CrossRefGoogle Scholar
  17. 17.
    Wahid Z, Nadir N (2013) Improvement of one factor at a time through design of experiments. World Appl Sci J 21:56–61Google Scholar
  18. 18.
    McDonald GC & Gunst RF (1991) Issues involved in the choice of experimental design strategies (Technical Report No. SMU/DS/TR/253). Department of Statistical Science, Southern Methodist UniversityGoogle Scholar
  19. 19.
    Xu H, Phoa FK, Wong WK (2009) Recent developments in nonregular fractional factorial designs. Stat Surv 3:18–46MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Montgomery DC (2005) Design and analysis of experiments, 6th edn. John Wiley and Sons, Inc. Google Scholar
  21. 21.
    Stowe RA, Mayer RP (1966) Efficient screening of process variables. Ind Eng Chem 58(2):36–40CrossRefGoogle Scholar
  22. 22.
    Dejaegher B, Capron X, Smeyers-Verbeke J, Vander Heyden Y (2006) Randomization tests to identify significant effects in experimental designs for robustness testing. Anal Chim Acta 564(2):184–200CrossRefGoogle Scholar
  23. 23.
    No AMCTB, Committee AM (2013) Experimental design and optimization (4): Plackett-Burman designs. Anal Methods 5(8):1901–1903CrossRefGoogle Scholar
  24. 24.
    Ali MY, Banu A, Shaffiq M, Rahman MA, Konneh M, Salehan M (2019) Investigation of taper angle in dry micro wire EDM. Int J Mech Eng Robot Res 8(1):725–728Google Scholar
  25. 25.
    Ali MY, Banu A, Salehan M, Adesta EYT, Hazza M, Shaffiq M (2018) Dimensional accuracy in dry micro wire electrical discharge machining. J Mech Eng Sci 12(1):3321–3329CrossRefGoogle Scholar
  26. 26.
    Maher I, Sarhan AAD, Hamdi M (2015) Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining. Int J Adv Manuf Technol 76:329–351CrossRefGoogle Scholar
  27. 27.
    Ndaliman MB, Khan AA, Ali MY, Wahid Z (2013) Determination of influential factors on EDMed surface properties using Plackett-Burman design. World Appl Sci J 21:88–93Google Scholar
  28. 28.
    Li Y (2014) Analysis of ion-enhanced field emission and field emission-driven microdischarges (doctor of philosophy’s dissertation). Notre Dame University, Notre DameGoogle Scholar
  29. 29.
    Go DB, Pohlman DA (2010) A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps. J Appl Phys 107(10):103303CrossRefGoogle Scholar
  30. 30.
    Macedo FTB, Wiessner M, Hollenstein C, Esteves PMB, Wegener K (2016) Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation. Int J Adv Manuf Technol:1–13Google Scholar
  31. 31.
    Klas M, Matejcik S, Radjenovic B, Radmilovic-Radjenovic M (2011) Experimental and theoretical studies of the breakdown voltage characteristics at micrometer separations in air. EPL (Europhysics Letters) 95(3):35002zbMATHCrossRefGoogle Scholar
  32. 32.
    Dhariwal RS, Torres JM, Desmulliez MPY (2000) Electric field breakdown at micrometer separations in air and nitrogen at atmospheric pressure. IEE Proc Sci Meas Technol 147(5):261–265CrossRefGoogle Scholar
  33. 33.
    Radmilovic-Radjenovic M, Radjenovic B (2017) The effect of the field emission on the breakdown voltage characteristics of nitrogen microdischarges. Int J Eng Innov Res 6(6):280–283Google Scholar
  34. 34.
    Wiessner M, Macedo FTB, Martendal CP, Kuster F, Wegener K (2018) Fundamental investigation of EDM plasmas, part I: a comparison between electric discharges in gaseous and liquid dielectric media. Procedia CIRP 68:330–335CrossRefGoogle Scholar
  35. 35.
    Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Investigation of the fundamentals of tool electrode wear in dry EDM. Procedia CIRP 46:55–58CrossRefGoogle Scholar
  36. 36.
    Tan X, Go DB (2018) Understanding the scaling of electron kinetics in the transition from collisional to collisionless conditions in microscale gas discharges. J Appl Phys 123(6):063303CrossRefGoogle Scholar
  37. 37.
    Li Y, Tirumala R, Rumbach P, Go DB (2013) The coupling of ion-enhanced field emission and the discharge during microscale breakdown at moderately high pressures. IEEE Trans Plasma Sci 41(1):24–35CrossRefGoogle Scholar
  38. 38.
    Radmilovic-Radjenovic M, Radjenovic B, Klas M, Bojarov A, Matejcik S (2013) The breakdown mechanisms in electrical discharges: the role of the field emission effect in direct current discharges in microgaps. Acta Physica Slovaca 63(3):105–205zbMATHGoogle Scholar
  39. 39.
    Rumbach P, Go DB (2012) Fundamental properties of field emission-driven direct current microdischarges. J Appl Phys 112(10):103302CrossRefGoogle Scholar
  40. 40.
    Rumbach P, Li Y, Martinez S, Twahirwa TJ, Go DB (2014) Experimental study of electron impact ionization in field emission-driven microdischarges. Plasma Sources Sci Technol 23(6):065026CrossRefGoogle Scholar
  41. 41.
    Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Dependence of crater formation in dry EDM on electrical breakdown mechanism. Procedia CIRP 42:161–166CrossRefGoogle Scholar
  42. 42.
    Munz M, Risto M, Haas R (2016) The phenomenon of polarity in EDM drilling process using water based dielectrics. Procedia CIRP 42:532–536CrossRefGoogle Scholar
  43. 43.
    Roth R, Balzer H, Kuster F, Wegener K (2012) Influence of the anode material on the breakdown behavior in dry electrical discharge machining. Procedia CIRP 1:639–644CrossRefGoogle Scholar
  44. 44.
    Jahan MP, Rahman M, Wong YS (2014) Micro-electrical discharge machining (micro-EDM): processes, varieties, and applications. In: Hashmi S, Batalha GF, Thyne CJV, Yilbas B (eds) Comprehensive Materials Processing, vol 11. Elsevier, pp 333–371Google Scholar
  45. 45.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259CrossRefGoogle Scholar
  46. 46.
    Habib S, Okada A (2016) Experimental investigation on wire vibration during fine wire electrical discharge machining process. Int J Adv Manuf Technol 84(9–12):2265–2276CrossRefGoogle Scholar
  47. 47.
    Patel VD, Patel DM, Patel UJ, Patel B, Butani N (2014) Review of wire-cut EDM process on titanium alloy. Int J Eng Res Appl 4(12):112–121Google Scholar
  48. 48.
    Xiaobing, F. (2013). Modelling and simulation of crater formation and wire vibration in micro WEDM (doctoral’s thesis). National University of Singapore, SingaporeGoogle Scholar
  49. 49.
    Tomura S, Kunieda M (2009) Analysis of electromagnetic force in wire-EDM. Precis Eng 33:255–262CrossRefGoogle Scholar
  50. 50.
    Maradia, U. & Wegener, K. (2015). EDM modelling and simulation. In M. P. Jahan (Ed.). Electrical discharge machining (EDM) types, technologies and applications (pp. 67–121). New York: Nova Science Publishers, Inc.Google Scholar
  51. 51.
    Liao YS, Chu YY, Yan MT (1997) Study of wire breaking process and monitoring of WEDM. Int J Mach Tools Manuf 37(4):555–567CrossRefGoogle Scholar
  52. 52.
    Reyad M, Ali MY (2009) Investigation of machining parameters for multiple-response optimization of micro electrodischarge milling. Int J Adv Manuf Technol 43(3–4):264–275Google Scholar
  53. 53.
    Garg RK, Singh KK, Sachdeva A, Sharma VS, Ojha K, Singh S (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50(5–8):611–624CrossRefGoogle Scholar
  54. 54.
    Florkowska B, Florkowski M, Roehrich J, Zydron P (2010) Partial discharge mechanism in a non-uniform electric field at higher pressure. IET Sci Meas Technol 5(2):59–66CrossRefGoogle Scholar
  55. 55.
    Kuffel, E., Zaengl, W. S., & Kuffel, J. (2000). High voltage engineering fundamentals (2nd). Oxford: Butterworth-HeinemannGoogle Scholar
  56. 56.
    Khademi A, Renani NG, Mofarrahi M, Jeddi AR, Yusof NM (2013) The best location for speed bump installation using experimental design methodology. Promet Traffic Transp 25(6):565–574Google Scholar
  57. 57.
    Le Man H, Behera SK, Park HS (2010) Optimization of operational parameters for ethanol production from Korean food waste leachate. Int J Environ Sci Technol 7(1):157–164CrossRefGoogle Scholar
  58. 58.
    Bari MN, Alam MZ, Muyibi SA, Jamal P (2009) Improvement of production of citric acid from oil palm empty fruit branches: optimization of media by statistical experimental designs. Bioresour Technol 100(12):3113–3120CrossRefGoogle Scholar
  59. 59.
    Omar WW, Nordin N, Mohamed M, Amin NAS (2009) A two-step biodesel production from waste cooking oil: optimization of pre-treatment step. J Appl Sci 9(17):3098–3103CrossRefGoogle Scholar
  60. 60.
    Banu A, Bakar MA, Ali MY, Adesta EY (2017) Analysis of WEDM process parameters on surface roughness and kerf using Taguchi method. Int J Eng Mater Manuf 2(4):103–109Google Scholar
  61. 61.
    Hoang KT, Yang SH (2015) Kerf analysis and control in dry micro-wire electrical discharge machining. Int J Adv Manuf Technol 78:1803–1812CrossRefGoogle Scholar
  62. 62.
    Macedo FTB, Wiessner M, Bernardelli GC, Kuster F, Wegener K (2018) Fundamental investigation of EDM plasmas, part II: parametric analysis of electric discharges in gaseous dielectric medium. Procedia CIRP 68:336–341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Asfana Banu
    • 1
  • Mohammad Yeakub Ali
    • 2
    Email author
  • Mohamed Abdul Rahman
    • 1
  • Mohamed Konneh
    • 3
  1. 1.Department of Manufacturing and Materials Engineering, Faculty of EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia
  2. 2.Mechanical Engineering Programme Area, Faculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBrunei Darussalam
  3. 3.Department of Mechanical and Maintenance Engineering, Faculty of Engineering, Fourah Bay CollegeUniversity of Sierra LeoneFreetownSierra Leone

Personalised recommendations