Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process

  • Lassaad Kilani
  • Tarek MabroukiEmail author
  • Mahfoudh Ayadi
  • Hechmi Chermiti
  • Salim Belhadi


Single-point incremental forming (SPIF) is a rising technology used shaping sheet-metals. The emergence of this manufacturing process is due to its capability to produce parts with complex shape at lower cost. The present contribution is focused on the presentation of a new designed rolling ball forming tool that can improve (SPIF) operations. For that, the effects of process working parameters on a set of process qualification criteria when forming of AA1050 aluminum alloy sheets is presented. Deep analyses treating impacts of tool step down, tool rolling ball diameter, and tool feed rate on the process responses such as forming axial forces, surface roughness, and sheet thinning are made. The analysis is based on statistical methodologies which made it possible to establish, using the multiple regression method, predictive analytical models for the different responses.


Incremental forming ANOVA RSM Regression Optimization Design of experiments 



Analysis of variance


Rolling ball diameter (mm)


Degrees of freedom


Tool feed rate (mm/min)


Average axial forming force (N)


Maximal axial forming force (N)


Axial Forming force (N)


Fisher test value


Incremental sheet forming


Mean squares


Percentage of contribution (%)

P value

Value of significance


Response surface methodology


Determination coefficient


Adjusted determination coefficient


Predictive determination coefficient


Arithmetic mean roughness (μm)


Mean peak-to-valley height (μm)


Maximum profile height (μm)


Single-point incremental forming


Squared deviations


Sum of squared deviations


Total sum of squared deviations


Vertical step down (mm)


Wall angle (degree)



  1. 1.
    Leszak E (1967) Apparatus and process for incremental dieless forming, United States Patent Office. Patent [US 3342051]Google Scholar
  2. 2.
    Mason B, Appleton E (1984) Sheet metal forming for small batches using sacrificial tooling.. In: Proc 3rd Int. Conf. On rotary metalworking, Kyoto, Japan, pp. 495–511Google Scholar
  3. 3.
    Emmens WC, Sebastiani G, Boogaard AH (2010) The technology of incremental sheet forming – a brief review of the history. J Mater Process Technol 210:981–997CrossRefGoogle Scholar
  4. 4.
    Iseki H, Kato K, Sakamoto S (1989) Flexible and incremental sheet metal forming using a spherical roller. Proceedings of 40th JJCTP41–44Google Scholar
  5. 5.
    Matsubara S (1994) Incremental backward bulge forming of a sheet metal with a hemispherical head tool. JJpn Soc Technol Plast 35(1994):1311–1316Google Scholar
  6. 6.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou A, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54(2):623–649CrossRefGoogle Scholar
  7. 7.
    Gunashekar G, Kishore K (2017) Modeling and manufacturing of an aerospace component by single point incremental forming process. International Research Journal of Engineering and Technology 4(9): 600-603Google Scholar
  8. 8.
    Hussain G, Khan HR, Gao L, Hayat N (2013) Guidelines for tool-size selection for single-point incremental forming of an aerospace alloy. Mater Manuf Process 28(3):324–329CrossRefGoogle Scholar
  9. 9.
    Boulila A, Ayadi M, Marzouki S, Slim B (2018) Contribution to a biomedical component production using incremental sheet forming. Int J Adv Manuf Technol 95:2821CrossRefGoogle Scholar
  10. 10.
    Wulf WA (2007) Changes in innovation ecology. Science 316:1253CrossRefGoogle Scholar
  11. 11.
    Behera A K, Alves de Sousa R, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. The Society of Manufacturing Engineers.1526–6125/2017CrossRefGoogle Scholar
  12. 12.
    Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao GA Review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol 92:2439–2462CrossRefGoogle Scholar
  13. 13.
    Bahloul R, Arfa H, BelHadjSalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74:163–185CrossRefGoogle Scholar
  14. 14.
    Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameter in incremental sheet forming. Int J Adv Manuf Technol 87:479–499CrossRefGoogle Scholar
  15. 15.
    Cawley B, Adams D, Jeswiet J (2012) Examining tool shapes in single point incremental forming. Proc NAMRI/SME 13(17):163Google Scholar
  16. 16.
    Hussain G (2014) Experimental investigations on the role of tool size in causing and controlling defects in single point incremental forming process. Proc IMechE Part B 228:266–277CrossRefGoogle Scholar
  17. 17.
    Siddiqi MUR, Corney JR, Sivaswamy G, Amir M, Bhattacharya R (2017) Design and validation of a fixture for positive incremental sheet forming. Proc Inst Mech Eng B J Eng Manuf 232(4):629–643CrossRefGoogle Scholar
  18. 18.
    Do VC, Lee BH, Yang SH, Kim YS (2017) The forming characteristic in the single-point incremental forming of a complex shape. Int J Nanomanuf 13(1):33CrossRefGoogle Scholar
  19. 19.
    Fernandez C, Trujillo A, Rivero A, Alvarez M, Puerta F J, Salguero J, Marcos M (2016) Implementing incremental sheet metal forming on a CNC machining centre. Proceedings of the 26th DAAAM International Symposium, pp.0926-0929, BGoogle Scholar
  20. 20.
    Li Y, Lu H, Daniel WJT, Meehan PA (2015) Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology. Int J Adv Manuf Technol 79:2041–2055CrossRefGoogle Scholar
  21. 21.
    Ambrogio G, Duflou J.R, Filice L, Aerens R (2007) Some considerations on force trends in Incremental Forming of different materials. 10th ESAFORM conference on material forming, AIP Conference Proceedings, vol 907, pp 193–198Google Scholar
  22. 22.
    Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46:969–982CrossRefGoogle Scholar
  23. 23.
    Dwivedy M, Kalluri V (2019) The effect of process parameters on forming forces in single point incremental forming. Procedia Manuf 29/120–128CrossRefGoogle Scholar
  24. 24.
    Saidi B, Giraud-Moreau L, Boulila A, Cherouat A, Nasri R (2017) Experimental and numerical study on force reduction in SPIF by using response surface. Lecture Notes in Mechanical Engineering, 835–844Google Scholar
  25. 25.
    Duflou JR, Tunçkol Y, Aerens R (2007) Force analysis for single point incremental forming. Key Eng Mater:344/543–344/550Google Scholar
  26. 26.
    Duflou J, Tunckol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189:65–72CrossRefGoogle Scholar
  27. 27.
    Liu Z, Liu S, Li Y, Meehan PA (2014) Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function. Mater Manuf Process 29(7):808–818CrossRefGoogle Scholar
  28. 28.
    Kurra S, Rahman NH, Regalla SP, Gupta AK (2018) Modeling and optimization of surface roughness in single point incremental forming process. J Mater Res Technol 4(3):304–313CrossRefGoogle Scholar
  29. 29.
    Durante M, Formisano A, Langella A, Capece Minutolo FM (2009) The influence of tool rotation on an incremental forming process. J Mater Process Technol 209(9):4621–4626CrossRefGoogle Scholar
  30. 30.
    Durante M, Formisano A, Langella A (2010) Comparison between analytical and experimental roughness values of components created by incremental forming. J Mater Process Technol 210(14):1934–1941CrossRefGoogle Scholar
  31. 31.
    Salem E, Shin J, Nath M, Banu M, Taub A (2016) Investigation of thickness variation in single point incremental forming. Procedia Manuf:5/828–5/837Google Scholar
  32. 32.
    Li JC, Li C, Zhou TG (2012) Thickness distribution and mechanical property of sheet metal incremental forming based on numerical simulation. Trans Nonferrous Metals Soc China 22(1):58–64Google Scholar
  33. 33.
    Iseki H, Kato K, Sakamoto S (1989) Flexible and incremental sheet metal forming using a spherical roller. Proceedings of 40th JJCTP41–44Google Scholar
  34. 34.
    Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130-131:42–46CrossRefGoogle Scholar
  35. 35.
    Shim MS, Park JJ (2001) The formability of aluminum sheet in incremental forming. J Mater Process Technol 113(1–3):654–658CrossRefGoogle Scholar
  36. 36.
    Matsubara S (2001) Apparatus for dieless forming plate materials, United States Patent Office. Patent [US6216508B1]Google Scholar
  37. 37.
    Zhongyi C (2010) Rolling tool head for incremental forming, Chinese Patent Office. Patent [CN101758135A]Google Scholar
  38. 38.
    Lu B et al (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique rollerball tool. Int J Mach Tools Manuf 85:14–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Lassaad Kilani
    • 1
  • Tarek Mabrouki
    • 1
    Email author
  • Mahfoudh Ayadi
    • 1
    • 2
  • Hechmi Chermiti
    • 3
  • Salim Belhadi
    • 4
  1. 1.University of Tunis El Manar, ENIT, Applied Mechanics and Engineering Laboratory (LR-11-ES19)TunisTunisia
  2. 2.University of Carthage, ENIB, Campus Universitaire Menzel AbderrahmanTunisiaTunisia
  3. 3.University Campus Raccada, ISET de KairouanKairouanTunisia
  4. 4.University of Guelma, May 8th 1945 Mechanics and Structures Laboratory LMS)GuelmaAlgeria

Personalised recommendations