Autonomous robot-aided optical tweezer system for biological cell manipulation

  • Mingyang XieEmail author


Over the past few decades, optical tweezers have become a powerful tool that is widely used in cell-based biomedical applications. Their popularity is attributed to their unique advantages in the manipulation of biological cells with high accuracy, degree of freedom, and flexibility in a noninvasive manner. With the trends toward the automation of biological processes with high throughput, precision, and reliability, many autonomous frameworks have been developed for the realization of diverse cell manipulations. This study reviews the latest advancements in automated cell transportation and reorientation control. Moreover, by integrating optical tweezers with other tools, the mechanisms of cell-based physiological activity and subcellular operation are investigated and reviewed. Discussions on the current challenges and potential research trends on optical manipulation of biological cells are finally presented.


Autonomous cell manipulation Cell transportation Cell rotation Optical tweezer Cell surgery 


Funding information

State Administration of Foreign Experts Affairs (G20190010180). Basic Research Program of Jiangsu Province (BK20180427). Fundamental Research Funds for the Central Universities (NS2019021). National Aerospace Science Foundation of China (2018ZD52050).


  1. 1.
    Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159CrossRefGoogle Scholar
  2. 2.
    Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRefGoogle Scholar
  3. 3.
    Wu Y, Sun D, Huang W, Xi N (2013) Dynamics analysis and motion planning for automated cell transportation with optical tweezers. IEEE/ASME Trans Mech 18:706–713CrossRefGoogle Scholar
  4. 4.
    Grover SC, Skirtach AG, Gauthier RC, Grover CP (Jan 2001) Automated single-cell sorting system based on optical trapping. J Biomed Opt 6:14–22CrossRefGoogle Scholar
  5. 5.
    Hendricks AG, Goldman YE (2017) Measuring molecular forces using calibrated optical tweezers in living cells. Meth Mole Bio 1486(2017):537–552CrossRefGoogle Scholar
  6. 6.
    Grammatikopoulou M and Yang G (2019) Three-dimensional pose estimation of optically transparent microrobots, IEEE Robotics and Automation Letters, pp. 1-1.Google Scholar
  7. 7.
    Grammatikopoulou M and Yang G (2017) Gaze contingent control for optical micromanipulation, in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5989-5995.Google Scholar
  8. 8.
    Ashkin A, Dziedzic J (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520CrossRefGoogle Scholar
  9. 9.
    Dasgupta R, Verma RS, Ahlawat S, Uppal A, Gupta PK (2011) Studies on erythrocytes in malaria infected blood sample with Raman optical tweezers. J Biomed Opt 16CrossRefGoogle Scholar
  10. 10.
    Gou X, Yang H, Fahmy TM, Wang Y, Sun D (2014) Direct measurement of cell protrusion force utilizing a robot-aided cell manipulation system with optical tweezers for cell migration control. Int J Robot Res 33:1782–1792CrossRefGoogle Scholar
  11. 11.
    Galla L, Meyer AJ, Spiering A, Sischka A, Mayer M, Hall AR, Reimann P, Anselmetti D (Jul 2014) Hydrodynamic slip on DNA observed by optical tweezers-controlled translocation experiments with solid-state and lipid-coated nanopores. Nano Lett 14:4176–4182CrossRefGoogle Scholar
  12. 12.
    Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL (2014) Optical tweezers analysis of DNA-protein complexes. Chem Rev 114:3087–3119CrossRefGoogle Scholar
  13. 13.
    Padgett M, Di Leonardo R (2011) Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip 11:1196–1205CrossRefGoogle Scholar
  14. 14.
    Chen H, Sun D (2012) Moving groups of microparticles into array with a robot–tweezers manipulation system. IEEE Trans Robot 28:1069–1080CrossRefGoogle Scholar
  15. 15.
    Cheah CC, Li X, Yan X, Sun D (2014) Observer-based optical manipulation of biological cells with robotic tweezers. IEEE Trans Robot 30:68–80CrossRefGoogle Scholar
  16. 16.
    Chowdhury S, Thakur A, Svec P, Wang C, Losert W, Gupta SK (2014) Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans Autom Sci Eng 11:338–347CrossRefGoogle Scholar
  17. 17.
    Wang X, Chen S, Kong M, Wang Z, Costa KD, Li RA, Sun D (Nov 7 2011) Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11:3656–3662CrossRefGoogle Scholar
  18. 18.
    Chen S, Cheng J, Kong C-W, Wang X, Han Cheng S, Li RA et al (2013) Laser-induced fusion of human embryonic stem cells with optical tweezers. Appl Phys Lett 103:033701CrossRefGoogle Scholar
  19. 19.
    Tan Y, Sun D, Cheng SH, and Li R.A (2011) Robotic cell manipulation with optical tweezers for biomechanical characterization, presented at the Robotics and Automation (ICRA), 2011 IEEE International Conference on.Google Scholar
  20. 20.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930CrossRefGoogle Scholar
  21. 21.
    Hörber J, Miles M (2003) Scanning probe evolution in biology. Science 302:1002–1005CrossRefGoogle Scholar
  22. 22.
    Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171CrossRefGoogle Scholar
  23. 23.
    Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981CrossRefGoogle Scholar
  24. 24.
    Zhang C, Khoshmanesh K, Mitchell A, Kalantar-Zadeh K (2010) Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396:401–420CrossRefGoogle Scholar
  25. 25.
    Pethig R (2010) Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811CrossRefGoogle Scholar
  26. 26.
    Morgan H, Hughes MP, Green NG (1999) Separation of submicron bioparticles by dielectrophoresis. Biophys J 77:516–525CrossRefGoogle Scholar
  27. 27.
    Jiang C, Mills JK (2015) Planar cell orientation control system using a rotating electric field. IEEE/ASME Trans Mech 20:2350–2358CrossRefGoogle Scholar
  28. 28.
    Chu H, Huan Z, Mills J, Yang J, Sun D (2015) Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure. Lab Chip 15:920–930CrossRefGoogle Scholar
  29. 29.
    Allsopp D, Milner K, Brown A, Betts W (1999) Impedance technique for measuring dielectrophoretic collection of microbiological particles. J Phys D Appl Phys 32:1066CrossRefGoogle Scholar
  30. 30.
    Heo S, Kim YY (Nov 2007) Optimal design and fabrication of MEMS rotary thermal actuators. J Micromech Microeng 17:2241–2247CrossRefGoogle Scholar
  31. 31.
    Ding X, Lin S-CS, Kiraly B, Yue H, Li S, Chiang I-K et al (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci 109:11105–11109CrossRefGoogle Scholar
  32. 32.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRefGoogle Scholar
  33. 33.
    Ramser K, Hanstorp D (2010) Optical manipulation for single-cell studies. J Biophotonics 3:187–206CrossRefGoogle Scholar
  34. 34.
    Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285CrossRefGoogle Scholar
  35. 35.
    Misawa H, Sasaki K, Koshioka M, Kitamura N, Masuhara H (1992) Multibeam laser manipulation and fixation of microparticles. Appl Phys Lett 60:310–312CrossRefGoogle Scholar
  36. 36.
    Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H (1991) Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt Lett 16:1463–1465CrossRefGoogle Scholar
  37. 37.
    Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. Selected Topics in Quantum Electronics, IEEE Journal 2:1066–1076CrossRefGoogle Scholar
  38. 38.
    Curtis JE, Schmitz CH, Spatz JP (2005) Symmetry dependence of holograms for optical trapping. Opt Lett 30:2086–2088CrossRefGoogle Scholar
  39. 39.
    Polin M, Ladavac K, Lee S-H, Roichman Y, Grier D (2005) Optimized holographic optical traps. Opt Express 13:5831–5845CrossRefGoogle Scholar
  40. 40.
    Hu S, Sun D (2011) Automatic transportation of biological cells with a robot-tweezer manipulation system. Int J Robot Res 30:1681–1694CrossRefGoogle Scholar
  41. 41.
    Ju T, Liu S, Yang J, Sun D (2014) Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells. IEEE Trans Autom Sci Eng 11:649–657CrossRefGoogle Scholar
  42. 42.
    Yan X, Sun D (2015) Multilevel-based topology design and cell patterning with robotically controlled optical tweezers. IEEE Trans Control Syst Technol 23:176–185CrossRefGoogle Scholar
  43. 43.
    Chen H, Wang C, Lou Y (2013) Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments. IEEE Trans Biomed Eng 60:1518–1527CrossRefGoogle Scholar
  44. 44.
    Xie M, Wang Y, Feng G, Sun D (2015) Automated pairing manipulation of biological cells with a robot-tweezers manipulation system. IEEE/ASME Trans Mech 20:2242–2251CrossRefGoogle Scholar
  45. 45.
    Li X, Yang H, Wang J, Sun D (2015) Design of a robust unified controller for cell manipulation with a robot-aided optical tweezers system. Automatica 55:279–286MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Li X, Yang H, Huang H, Sun D (2018) A switching controller for high speed cell transportation by using a robot-aided optical tweezers system. Automatica 89:308–315MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Hu S, Chen S, Chen S, Xu G, Sun D (2017) Automated transportation of multiple cell types using a robot-aided cell manipulation system with holographic optical tweezers. IEEE/ASME Trans Mech 22:804–814CrossRefGoogle Scholar
  48. 48.
    Xie M, Li X, Wang Y, Liu Y, Sun D (2018) Saturated PID control for the optical manipulation of biological cells. IEEE Trans Control Syst Technol 26:1909–1916CrossRefGoogle Scholar
  49. 49.
    Cheah CC, Li X, Yan X, Sun D (2015) Simple PD control scheme for robotic manipulation of biological cell. IEEE Trans Autom Control 60:1427–1432MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Li X, Cheah CC, Hu S, Sun D (2013) Dynamic trapping and manipulation of biological cells with optical tweezers. Automatica 49:1614–1625MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Li X, Cheah CC (2015) Robotic cell manipulation using optical tweezers with unknown trapping stiffness and limited FOV. IEEE/ASME Trans Mech 20:1624–1632CrossRefGoogle Scholar
  52. 52.
    Li X, Cheah CC (Dec 2017) Stochastic optical trapping and manipulation of a micro object with neural-network adaptation. IEEE/ASME Trans Mech 22:2633–2642CrossRefGoogle Scholar
  53. 53.
    Li X, Cheah CC (2017) A simple trapping and manipulation method of biological cell using robot-assisted optical tweezers: singular perturbation approach. IEEE Trans Ind Electron 64:1656–1663CrossRefGoogle Scholar
  54. 54.
    Yan X, Cheah CC, Ta QM, Pham QC (Jun 2016) Stochastic dynamic trapping in robotic manipulation of micro-objects using optical tweezers. IEEE Trans Robot 32:499–512CrossRefGoogle Scholar
  55. 55.
    Xie M, Shakoor A, Li C, Sun D (2019) Robust orientation control of multi-DOF Cell based on uncertainty and disturbance estimation. Int J Robust Nonlin Contr 9(14):4859–4871MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Li X, Liu C, Chen S, Wang Y, Cheng SH, Sun D (2017) In vivo manipulation of single biological cells with an optical tweezers-based manipulator and a disturbance compensation controller. IEEE Trans Robot 33:1200–1212CrossRefGoogle Scholar
  57. 57.
    Li X, Chen S, Liu C, Cheng SH, Wang Y, Sun D (2018) Development of a collision-avoidance vector based control algorithm for automated in-vivo transportation of biological cells. Automatica 90:147–156MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Li X, Xu S, Cheng SH, and D. Sun (2019) Simultaneous localization and mapping-based in vivo navigation control of microparticles, IEEE Transactions on Industrial Informatics, pp. 1-1.Google Scholar
  59. 59.
    Aabo T, Perch-Nielsen IR, Dam JS, Palima DZ, Siegumfeldt H, GlÞckstad J et al (2010) Effect of long-and short-term exposure to laser light at 1070 nm on growth of saccharomyces cerevisiae. J Biomed Opt 15:041505–041505-7CrossRefGoogle Scholar
  60. 60.
    Banerjee AG, Chowdhury S, Gupta SK, Losert W (2011) Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins. J Biomed Opt 16:051302CrossRefGoogle Scholar
  61. 61.
    Sun CK, Huang YC, Cheng PC, Liu HC, Lin BL (Oct 2001) Cell manipulation by use of diamond microparticles as handles of optical tweezers. J Opt Soc Am B-Optical Phys 18:1483–1489CrossRefGoogle Scholar
  62. 62.
    Ta QM, Cheah CC (2019) Stochastic control for orientation and transportation of microscopic objects using multiple optically driven robotic fingertips. IEEE Trans Robot 35:861–872CrossRefGoogle Scholar
  63. 63.
    Thakur A, Chowdhury S, Švec P, Wang C, Losert W, Gupta SK (2014) Indirect pushing based automated micromanipulation of biological cells using optical tweezers. Int J Robot Res 33:1098–1111CrossRefGoogle Scholar
  64. 64.
    Chowdhury S, Thakur A, Wang C, Švec P, Losert W, and Gupta SK, Automated indirect manipulation of irregular shaped cells with optical tweezers for studying collective cell migration, in Robotics and Automation (ICRA), 2013 IEEE International Conference on, 2013, pp. 2789-2794.Google Scholar
  65. 65.
    Banerjee A, Chowdhury S, Gupta SK (2014) Optical tweezers: autonomous robots for the manipulation of biological cells. IEEE Robot Autom Mag 21:81–88CrossRefGoogle Scholar
  66. 66.
    Xie Y, Sun D, Liu C, Tse HY, Cheng SH (2010) A force control approach to a robot-assisted cell microinjection system. Int J Robot Res 29:1222–1232CrossRefGoogle Scholar
  67. 67.
    Ebner T, Moser M, Shebl O, Mayer R, Tews G (2011) Assisting in vitro fertilization by manipulating cumulus-oocyte-complexes either mechanically or enzymatically does not prevent IVF failure. J Turk Ger Gynecol Assoc 12:135CrossRefGoogle Scholar
  68. 68.
    Yoshida N, Perry AC (2007) Piezo-actuated mouse intracytoplasmic sperm injection (ICSI). Nat Protoc 2:296–304CrossRefGoogle Scholar
  69. 69.
    Ando J, Bautista G, Smith N, Fujita K, Daria VR (Oct 2008) Optical trapping and surgery of living yeast cells using a single laser. Rev Sci Instrum 79:103705CrossRefGoogle Scholar
  70. 70.
    Mohanty SK, Uppal A, Gupta PK (2004) Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis. Biotechnol Lett 26:971–974CrossRefGoogle Scholar
  71. 71.
    Mohanty SK, Dasgupta R, Gupta PK (2005) Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers. Appl Phys B Lasers Opt 81:1063–1066CrossRefGoogle Scholar
  72. 72.
    Arias A, Etcheverry S, Solano P, Staforelli J, Gallardo MJ, Rubinsztein-Dunlop H, Saavedra C (2013) Simultaneous rotation, orientation and displacement control of birefringent microparticles in holographic optical tweezers. Opt Express 21:102–111CrossRefGoogle Scholar
  73. 73.
    Bingelyte V, Leach J, Courtial J, Padgett M (2003) Optically controlled three-dimensional rotation of microscopic objects. Appl Phys Lett 82:829–831CrossRefGoogle Scholar
  74. 74.
    Cao B, Kelbauskas L, Chan S, Shetty RM, Smith D, Meldrum DR (2017) Rotation of single live mammalian cells using dynamic holographic optical tweezers. Opt Lasers Eng 92:70–75CrossRefGoogle Scholar
  75. 75.
    Tanaka Y, Kawada H, Hirano K, Ishikawa M, Kitajima H (2008) Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. Opt Express 16:15115–15122CrossRefGoogle Scholar
  76. 76.
    Sheu F-W, Lan T-K, Lin Y-C, Chen S, Ay C (2010) Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers. Opt Express 18:14724–14729CrossRefGoogle Scholar
  77. 77.
    Ta QM and Cheah CC, Simultaneous orientation and positioning control of a microscopic object using robotic tweezers, in Robotics and Automation (ICRA), 2017 IEEE International Conference on, 2017, pp. 5864-5869.Google Scholar
  78. 78.
    Xie M, Mills JK, Wang Y, Mahmoodi M, Sun D (2016) Automated translational and rotational control of biological cells with a robot-aided optical tweezers manipulation system. IEEE Trans Autom Sci Eng 13:543–551CrossRefGoogle Scholar
  79. 79.
    Xie M, Mills JK, Li X, Wang Y, and Sun D, Modelling and control of optical manipulation for cell rotation, in Robotics and Automation (ICRA), 2015 IEEE International Conference on, 2015, pp. 956-961.Google Scholar
  80. 80.
    Xie M, Shakoor A, Shen Y, Mills JK, Sun D (2019) Out-of-plane rotation control of biological cells with a robot-tweezers manipulation system for orientation-based cell surgery. IEEE Trans Biomed Eng 66:199–207CrossRefGoogle Scholar
  81. 81.
    Zhuang S, Lin W, Zhong J, Zhang G, Li L, Qiu J, Gao H (Jan 2018) Visual servoed three-dimensional rotation control in zebrafish larva heart microinjection system. IEEE Trans Biomed Eng 65:64–73CrossRefGoogle Scholar
  82. 82.
    Leung C, Lu Z, Zhang XP, Sun Y (2012) Three-dimensional rotation of mouse embryos. IEEE Trans Biomed Eng 59:1049–1056CrossRefGoogle Scholar
  83. 83.
    Kotnala A, Zheng Y, Fu J, Cheng W (2017) Microfluidic-based high-throughput optical trapping of nanoparticles. Lab Chip 17:2125–2134CrossRefGoogle Scholar
  84. 84.
    Pilát Z, Jonáš A, Ježek J, Zemánek P (2017) Effects of infrared optical trapping on saccharomyces cerevisiae in a microfluidic system. Sensors 17:2640CrossRefGoogle Scholar
  85. 85.
    Umehara S, Hattori A, Wakamoto Y, Yasuda K (2004) Simultaneous measurement of growth and movement of cells exploiting on-chip single-cell cultivation assay. Jpn J Appl Phys 43:1214CrossRefGoogle Scholar
  86. 86.
    Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksör M, Hohmann S, Nyström T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7:71–76CrossRefGoogle Scholar
  87. 87.
    Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N et al (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83CrossRefGoogle Scholar
  88. 88.
    Shields CW IV, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15:1230–1249CrossRefGoogle Scholar
  89. 89.
    Tan Y, Sun D, Wang J, Huang W (2010) Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. IEEE Trans Biomed Eng 57:1816–1825CrossRefGoogle Scholar
  90. 90.
    Seeger S, Monajembashi S, Hutter KJ, Futterman G, Wolfrum J, Greulich K (1991) Application of laser optical tweezers in immunology and molecular genetics. J Int Soc Anal Cyto 12:497–504Google Scholar
  91. 91.
    Shakoor A, Xie M, Luo T, Hou J, Shen Y, Mills JK, Sun D (2019) Achieving automated organelle biopsy on small single cells using a cell surgery robotic system. IEEE Trans Biomed Eng 66:2210–2222CrossRefGoogle Scholar
  92. 92.
    Shakoor A, Luo T, Chen S, Xie M, Mills JK, and Sun D (2017) A high-precision robot-aided single-cell biopsy system, in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5397-5402.Google Scholar
  93. 93.
    Schneckenburger H, Hendinger A, Sailer R, Gschwend MH, Strauss WS, Bauer M, Schütze K (2000) Cell viability in optical tweezers: high power red laser diode versus Nd: YAG laser. J Biomed Opt 5:40–44CrossRefGoogle Scholar
  94. 94.
    Min TL, Mears PJ, Chubiz LM, Rao CV, Golding I, Chemla YR (2009) High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 6:831CrossRefGoogle Scholar
  95. 95.
    Jiao J, Rebane AA, Ma L, and Zhang Y (2017) Single-molecule protein folding experiments using high-precision optical tweezers, in Optical Tweezers, ed: Springer, pp. 357-390.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations