A review on direct hot extrusion technique in recycling of aluminium chips

  • Abdullah WagimanEmail author
  • Mohammad Sukri Mustapa
  • Rosli Asmawi
  • Shazarel Shamsudin
  • Mohd Amri Lajis
  • Yoshiharu Mutoh


Recycling of industrial waste is a subject of great importance today in any sector and more so in the aluminium industry. Aluminium recycling could sustain material resources, reduce the usage of energy, ease greenhouse gas emission and save the environment. This study examines the usage of direct hot extrusion of aluminium chip in the recycling of aluminium, focusing on the end product, properties and processing route. The process directly converts the new scrap of aluminium chips generated from industries to aluminium-based composite or aluminium alloys. The properties of the extrudates depend on the process parameters and the alloying elements added to the aluminium chips. High shear strain is required to disperse the oxide layer on the surfaces of the chip, thus permitting a contact between the newly exposed aluminium chips, and is consolidated to form a solid semi-finished product. The technique can be done through various process combinations and routes. The selection of process combination and routes depends on the product type and properties, degree of contamination of chip and size. The technique is proven as a viable method for aluminium recycling.


Direct recycling Aluminium chips Hot extrusion 


Funding information

The work was financially supported by the Ministry of Higher Education of Malaysia, through the grant TIER 1 H085. Additional supports in terms of facilities were also provided by the Sustainable Manufacturing and Recycling Technology, Advanced Manufacturing, and Materials Center (SMART-AMMC), Universiti Tun Hussein Onn Malaysia (UTHM).


  1. 1.
    Nappi C (2013) The global aluminium industry 40 years from 1972Google Scholar
  2. 2.
    Kim D, Kim J, Kim Y, Lim J, Park H, Ye B (2018) Evaluation of the microstructure and mechanical properties on solution heat treatment of recycled A319 cutting chip. Int J Precis Eng Manuf TechnolGoogle Scholar
  3. 3.
    Sachdev A, Mishra R, Mahato A, Alpas A (2012) Vehicle lightweighting: challenges and opportunities. In: Weiland H, Rollett AD, William AC (eds) Proceedings of the 13th International Conference on Aluminum Alloys, no. 2011. Springer, Cham, Pittsburgh, pp 609–622Google Scholar
  4. 4.
    International Aluminium Institute (2011) Results of the 2010 Anode Effect SurveyGoogle Scholar
  5. 5.
    International Aluminum Institute (2009) Global aluminium recycling: a cornerstone of sustainable development, LondonGoogle Scholar
  6. 6.
    Das SK, Yin W (2007) The worldwide aluminum economy: the current state of the industry. J Miner Met Mater Soc 59(11):57–63CrossRefGoogle Scholar
  7. 7.
    Gándara MJF (2013) Aluminium: the metal of choice. Mater Technol 47(3):261–265Google Scholar
  8. 8.
    Stacey M (2015) Aluminium recyclability and recycling, NotinghamGoogle Scholar
  9. 9.
    Hirve R (2009) Issues in recycling aluminium for extrusion—a review. Metalworld, no. March, pp 32–35Google Scholar
  10. 10.
    Gronostajski J, Marciniak H, Matuszak A (2000) New methods of aluminium and aluminium-alloy chips recycling. J Mater Process Technol 106:34–39CrossRefGoogle Scholar
  11. 11.
    Das SK, Green JAS, Kaufman JG (2010) Aluminum recycling: economic and environmental benefits. Light Metal Age (February):22–24Google Scholar
  12. 12.
    Kellens K (2017) Environmental modelling of aluminium recycling: a life cycle assessment tool for sustainable metal management. J Clean Prod 105(October):357–370Google Scholar
  13. 13.
    Moungomo JBM, Songmene V, Kouam J (2016) Machinability study of recycled aluminum cans and machining chips. Int J Adv Manuf Technol 87(9–12):2551–2566CrossRefGoogle Scholar
  14. 14.
    Hatayama H, Daigo I, Matsuno Y, Adachi Y (2012) Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resour Conserv Recycl 66:8–14CrossRefGoogle Scholar
  15. 15.
    Das SK, Iii WJL, Hayden HW, Green JAS, Jr WHH (2004) Energy implications of the changing world of aluminum metal supply. J Miner Met Mater Soc 56(8):14–17CrossRefGoogle Scholar
  16. 16.
    Kevorkijan V (2013) Challenges and advantages of recycling wrought aluminium alloys from lower grades of metallurgically clean scrap. Mater Technol 47(1):13–23Google Scholar
  17. 17.
    Suzuki K, Shigematsu I, Imai T, Saito N (2005) Influences of chip characteristics and extrusion conditions on the properties of a 6061 aluminum alloy recycled from cutting chips. J Jpn Inst Light Met 55(9):395–399CrossRefGoogle Scholar
  18. 18.
    M. Stern (1945) Method for treating aluminium or aluminium alloy scrap 2391752.Google Scholar
  19. 19.
    Güley V, Güzel A, Jäger A, Ben Khalifa N, Tekkaya AE, Misiolek WZ (2013) Effect of die design on the welding quality during solid state recycling of AA6060 chips by hot extrusion. Mater Sci Eng A 574:163–175CrossRefGoogle Scholar
  20. 20.
    Chiba R, Yoshimura M (2015) Solid-state recycling of aluminium alloy swarf into c-channel by hot extrusion. J Manuf Process 17:1–8CrossRefGoogle Scholar
  21. 21.
    Pantke K, Güley V, Ben Khalifa N, Heilmann M, Biermann D, Tekkaya AE (2010) Aluminium scrap recycling by hot extrusion without melting process. In: Proceeding of the 12th International Conference on Aluminium Alloys, pp 242–247Google Scholar
  22. 22.
    Suzuki K, Huang XS, Watazu A, Shigematsu I, Saito N (2007) Recycling of 6061 aluminum alloy cutting chips using hot extrusion and hot rolling. Mater Sci Forum 544–545(5):443–446CrossRefGoogle Scholar
  23. 23.
    Gronostajski J, Chmura W, Gronostajski Z (2002) Bearing materials obtained by recycling of aluminium and aluminium bronze chips. J Mater Process Technol 126:483–490CrossRefGoogle Scholar
  24. 24.
    Schikorra M, Pantke K, Tekkaya AE, Biermann D (2008) Re-use of AA6060, AA6082, and AA7075 aluminum turning chips by hot extrusion. In: The 9th International Conference on Technology of Plasticity, pp 902–907Google Scholar
  25. 25.
    Selmy AI, El Aal MIA, El-Gohr AM, Taha MA (2016) Solid-state recycling of aluminum alloy (AA-6061) chips via hot extrusion followed by equal channel angular pressing (ECAP). Egypt Int J Eng Sci Technol 21(October):33–42Google Scholar
  26. 26.
    Güley V, Ben Khalifa N, Tekkaya AE (2010) Direct recycling of 1050 aluminum alloy scrap material mixed with 6060 aluminum alloy chips by hot extrusion. Int J Mater Form 3:853–856CrossRefGoogle Scholar
  27. 27.
    Jahedi M, Mani B, Shakoorian S, Pourkhorshid E (2012) A deformation rate effect on the microstructure and mechanical properties of Al–SiCp composites consolidated by hot extrusion. Mater Sci Eng A 556:23–30CrossRefGoogle Scholar
  28. 28.
    Chmura W, Gronostajski Z (2006) Bearing composites made from aluminium and aluminium bronze chips. J Achiev Mater Manuf Eng, February 178:188–193CrossRefGoogle Scholar
  29. 29.
    Etherington C (1978) Conform and the recycling of non-ferrous scrap metals. Conserv Recycl 2(March):19–29CrossRefGoogle Scholar
  30. 30.
    Fogagnolo JB, Simón MA, Martinez MA (2003) Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. J Mater Process Technol 144:792–795CrossRefGoogle Scholar
  31. 31.
    Haase M, Tekkaya AE (2014) Recycling of aluminum chips by hot extrusion with subsequent cold extrusion. Procedia Eng 81(October):652–657CrossRefGoogle Scholar
  32. 32.
    Pantke K, Güley V, Ben Khalifa N, Heilmann M, Biermann D, Tekkaya AE (2010) Aluminum scrap recycling by hot extrusion without melting process. In: Proceedings of the 12th International Conference on Aluminium Alloys, pp 242–247Google Scholar
  33. 33.
    Chmura W, Gronostajski Z (2007) Bearing materials obtained by diffusion bonding of aluminium and aluminium bronze chips. Arch Civ Mech Eng 7(2):53–66CrossRefGoogle Scholar
  34. 34.
    Ragab AE et al (2017) Effect of extrusion temperature on the surface roughness of solid state recycled aluminum alloy 6061 chips during turning operation. 9(10):1–11Google Scholar
  35. 35.
    Haase M, Ben Khalifa N, Tekkaya AE, Misiolek WZ (2012) Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP). Mater Sci Eng A 539:194–204CrossRefGoogle Scholar
  36. 36.
    Tokarski T (2016) Mechanical properties of solid-state recycled 4xxx aluminum alloy chips. J Mater Eng Perform 25(8):3252–3259CrossRefGoogle Scholar
  37. 37.
    Samuel M (2003) Reinforcement of recycled aluminum-alloy scrap with Saffil ceramic fibers. J Mater Process Technol 142(2003):295–306CrossRefGoogle Scholar
  38. 38.
    Güley V, Ben Khalifa N, Tekkaya AE (2011) The effect of extrusion ratio and material flow on the mechanical properties of aluminum profiles solid state recycled from 6060 aluminum alloy chips. AIP Conf Proc 1614:1609–1614CrossRefGoogle Scholar
  39. 39.
    Limited MA (1994) The ecological demand and practice for recycling of aluminium. 10:193–204Google Scholar
  40. 40.
    Lela B, Krolo J, Jozi S (2016) Mathematical modeling of solid-state recycling of aluminum chips. Int J Adv Manuf Technol 87:1125–1133CrossRefGoogle Scholar
  41. 41.
    Misiolek WZ, Haase M, Ben N, Tekkaya AE, Kleiner M (2012) High quality extrudates from aluminum chips by new billet compaction and deformation routes. CIRP Ann Manuf Technol 61(1):239–242CrossRefGoogle Scholar
  42. 42.
    Chino Y et al (2003) Corrosion and mechanical properties of recycled 5083 aluminum alloy by solid state recycling. 44(7):1284–1289Google Scholar
  43. 43.
    Lee JS, Chino Y, Hosokawa H, Shimojima K, Yamada Y, Mabuchi M (2005) Deformation characteristics at elevated temperature in recycled 5083 aluminum alloy by solid state recycling. Mater Trans 46(12):2637–2640CrossRefGoogle Scholar
  44. 44.
    Gronostajski JZ, Marciniak H, Matuszak A (1996) Production of composite on the base of AlCu4 alloys chips. J Mater Process Technol 60:719–722CrossRefGoogle Scholar
  45. 45.
    Dimos P, Karel K, Yelin D, Carlos K, Duflou JR (2017) Solid state recycling of aluminium alloys via a porthole die hot extrusion process: scaling up to production. AIP Conf Proc 1896(1):2–8Google Scholar
  46. 46.
    Gronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A (1997) Direct recycling of aluminium chips into extrude products. J Mater Process Technol 1(64):149–156CrossRefGoogle Scholar
  47. 47.
    Gronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A (1998) Production of composites from Al and AlMg2 alloy chips. J Mater Process Technol 77:37–41CrossRefGoogle Scholar
  48. 48.
    Tekkaya AE, Güley V, Haase M, Jäger A (2012) Hot extrusion of aluminum chips. In: 13th International Conference on Aluminum Alloys (ICAA13), pp 1559–1573CrossRefGoogle Scholar
  49. 49.
    Tekkaya A, Schikorra M, Becker D, Biermann D, Hammer N, Pantke K (2009) Hot profile extrusion of AA-6060 aluminum chips. J Mater Process Technol 209:3343–3350CrossRefGoogle Scholar
  50. 50.
    Chmura W, Gronostajski J (2000) Mechanical and tribological properties of aluminium-base composites produced by the recycling of chips. J Mater Process Technol 106:23–27CrossRefGoogle Scholar
  51. 51.
    Ab Rahim SN, Lajis MA, Ariffin S (2015) A review on recycling aluminum chips by hot extrusion process. Procedia CIRP 26(January):761–766CrossRefGoogle Scholar
  52. 52.
    Chiba R, Nakamura T, Kuroda M (2011) Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold rolling. J Mater Process Technol 211(11):1878–1887CrossRefGoogle Scholar
  53. 53.
    Haase M, Tekkaya AE (2015) Cold extrusion of hot extruded aluminum chips. J Mater Process Technol 217:356–367CrossRefGoogle Scholar
  54. 54.
    Behrens BA, Frischkorn C, Bonhage M (2014) Reprocessing of AW2007, AW6082 and AW7075 aluminium chips by using sintering and forging operations. Prod Eng 8(4):443–451CrossRefGoogle Scholar
  55. 55.
    Lajis MA, Ahmad A, Yusuf NK, Azami AH, Wagiman A (2017) Mechanical properties of recycled aluminium chip reinforced with alumina (Al2O3) particle. Mater Sci Eng Technol 48(3):306–310Google Scholar
  56. 56.
    Yusuf NK, Lajis MA, Daud MI, Noh MZ (2013) Effect of operating temperature on direct recycling aluminium chips (AA6061) in hot press forging process. Appl Mech Mater 315:728–732CrossRefGoogle Scholar
  57. 57.
    Shahrom MS, Yusoff AR, Lajis MA (2013) Taguchi method approach for recyling chip waste from machining aluminum (AA6061) using hot press forging process. Adv Mater Res 845(September):637–641CrossRefGoogle Scholar
  58. 58.
    Shahrom MS, Yusoff AR (2017) Cyclic extrusion compression back pressure technique for hot forging process in direct recycling of aluminium 6061 machining chip. J Manuf Process 29CrossRefGoogle Scholar
  59. 59.
    Lajis MA, Khamis SS, Yusuf NK (2014) Optimization of hot press forging parameters in direct recycling of aluminium chip (AA 6061). Key Eng Mater 622:223–230CrossRefGoogle Scholar
  60. 60.
    Lajis MA, Yusuf NK, Noh MZ (2013) Mechanical properties and surface integrity of direct recycling aluminium chips (AA6061) by hot press forging process. In: 11th Global Conference on Sustainable Manufacturing-Innovative Solutions, pp 375–380Google Scholar
  61. 61.
    Kuddus S, Mustapa MS, Ibrahim MR, Shamsudin S, Kadir MIA, Lajis MA (2017) Microstructures and tensile characteristics on direct recycled aluminium chips AA6061/Al powder by hot pressing method. Mater Sci Forum 909:9–14CrossRefGoogle Scholar
  62. 62.
    Kadir MIA, Mustapa MS, Mahdi AS, Kuddus S, Samsi MA (2017) Evaluation of hardness strength and microstructures of recycled Al chip and powder AA6061 fabricated by cold compaction method. IOP Conf Ser Mater Sci Eng 166(1)Google Scholar
  63. 63.
    Kadir MIA, Mustapa MS, Latif NA, Mahdi AS (2017) Microstructural analysis and mechanical properties of direct recycling aluminium chips AA6061/Al powder fabricated by uniaxial cold compaction technique. Procedia Eng 184:687–694CrossRefGoogle Scholar
  64. 64.
    Mahdi AS, Mustapa MS, Lajis MA, Warikh M, Rashid A (2015) Effect of compaction pressure on physical properties of milled aluminium chip (AA6061). Int J Sci Res 4(9):1759–1764Google Scholar
  65. 65.
    Marcel W, Mateusz W, Lukasz W (2015) Mechanical properties of solid state recycled 6060 aluminum alloy chips. Jun 3rd–5th 2015, Brno, Czech Republic, EU, no. August, pp 1–6Google Scholar
  66. 66.
    Kume Y, Takahashi T, Kobashi M, Kanetake N (2009) Solid state recycling of die-cast aluminum alloy chip wastes by compressive torsion processing. Keikinzoku/J Jpn Inst Light Met 59(7):354–358CrossRefGoogle Scholar
  67. 67.
    Ibrahim M, El A, Yoo E, Seop H (2013) Recycling of AlSi8Cu3 alloy chips via high pressure torsion. Mater Sci Eng A 560:121–128CrossRefGoogle Scholar
  68. 68.
    Zhang H, Li X, Deng X, Reynolds AP, Sutton MA (2018) Numerical simulation of friction extrusion process. J Mater Process Technol 253(November 2017):17–26CrossRefGoogle Scholar
  69. 69.
    Mamoru Mabuchi KH, Kubota K (1995) New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars. Mater Trans 36(10):1249–1254CrossRefGoogle Scholar
  70. 70.
    Duflou JR et al (2015) Environmental assessment of solid state recycling routes for aluminium alloys: can solid state processes significantly reduce the environmental impact of aluminium recycling? CIRP Ann Manuf Technol 64(1):37–40CrossRefGoogle Scholar
  71. 71.
    Gronostajski J, Matuszak A (1999) The recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips. J Mater Process Technol 93:35–41CrossRefGoogle Scholar
  72. 72.
    Krolo J, Lela B, Ljumović P (2017) Electrical conductivity and mechanical properties of the solid state recycled EN AW 6082 alloy. Mech Technol Struct Mater:71–76Google Scholar
  73. 73.
    Gronostajski JZ, Marciniak H, Matuszak A, Samuel M (2001) Aluminium ± ferro-chromium composites produced by recycling of chips. J Mater Process Technol 119:251–256CrossRefGoogle Scholar
  74. 74.
    Gronostajski J, Chmura W, Gronostajski Z (2006) Phases created during diffusion bonding of aluminium and aluminium bronze chips. J Achiev Mater Manuf Eng 19(1):32–37Google Scholar
  75. 75.
    Guluzade R, Avcı A, Demirci MT, Erkendirci ÖF (2013) Fracture toughness of recycled AISI 1040 steel chip reinforced AlMg1SiCu aluminum chip composites. Mater Des 52:345–352CrossRefGoogle Scholar
  76. 76.
    Segreto T, Simeone A, Teti R (2014) Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning. CIRP J Manuf Sci Technol 7(3):202–209CrossRefGoogle Scholar
  77. 77.
    König W, Erinski D (1983) Machining and machinability of aluminium cast alloys. CIRP Ann Manuf Technol 32(2):535–540CrossRefGoogle Scholar
  78. 78.
    ISO 3685:1993 Tool life testing with single point turning tools, Annex G:41Google Scholar
  79. 79.
    Kačmarčik I, Pepelnjak T, Plančak M (2012) Solid state recycling by cold compression of Al-alloy chips. J Technol Plast 37(1)Google Scholar
  80. 80.
    Hu M, Ji Z, Chen X, Zhang Z (2008) Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Mater Charact 59:385–389CrossRefGoogle Scholar
  81. 81.
    Steenkamp LP, Hagedorn-Hansen D, Oosthuizen GA (2017) Visual management system to manage manufacturing resources. Procedia Manuf 8(December):455–462CrossRefGoogle Scholar
  82. 82.
    Durr JFW, Hagedorn-hansen D, Oosthuizen GA (2017) Waste to resource process chain strategies for global manufacturers. Procedia Manuf 8(October 2016):595–602CrossRefGoogle Scholar
  83. 83.
    Samuel M (2003) A new technique for recycling aluminium scrap. J Mater Process Technol 135:117–124CrossRefGoogle Scholar
  84. 84.
    Roshan MR, Mirzaei M, Jahromi SAJ (2014) Microstructural characteristics and tensile properties of nano-composite Al 2014/4 wt.% Al2O3 produced from machining chips. J Alloys Compd 569(2013):111–117Google Scholar
  85. 85.
    Kore AS, Nayak KC, Date PP (2017) Formability of aluminium sheets manufactured by solid state recycling. IOP Conf Ser J Phys 896(1)Google Scholar
  86. 86.
    Wagiman A et al (2019) Effect of chip treatment on chip-based billet densification in solid-state recycling of new aluminium scrap. In: Awang M, Emamian SS, Yusof F (eds) Advances in material sciences and engineering. Springer, Singapore, pp 327–336Google Scholar
  87. 87.
    Allwood JM, Huang Y, Barlow CY (2005) Recycling scrap aluminium by cold-bonding. In: Proceedings of the 8th International Conference on Technology Plasticity, pp 311–312Google Scholar
  88. 88.
    Gulbransen EA, Wysong WS (1947) Thin oxide films on aluminum. J Phys Chem 51(5):1087–1103CrossRefGoogle Scholar
  89. 89.
    Paraskevas D, Kellens K, Deng Y, Dewulf W, Kampen C, Duflou JR (2017) Solid state recycling of aluminium alloys via a porthole die hot extrusion process: scaling up to production. AIP Conf Proc 1896(October)Google Scholar
  90. 90.
    Wędrychowicz M, Wiewióra M, Tokarski T, Cios G (2015) Effect of Ecap on the microstructure and mechanical properties of plastically consolidated 413.0 aluminum alloy chips. Metal 2015:1–6Google Scholar
  91. 91.
    Torres Y, Pavón JJ, Nieto I, Rodríguez JA (2011) Conventional powder metallurgy process and characterization of porous titanium for biomedical applications. Metall Mater Trans B Process Metall Mater Process Sci 42(4):891–900CrossRefGoogle Scholar
  92. 92.
    Tucholski G, Ruf U (2013) Chips versus briquettes: how the aluminium industry can effectively and efficiently recycle scrap. Int Alum J 89(1/2):87–88Google Scholar
  93. 93.
    Ferreira LFP, Gatamorta F, Bayraktar E, Robert MH (2017) Manufacturing of low cost composites with porous structures from scrap aluminium (AA2014) chips. In: Ralph W, Singh R, Tandon G, Thakre P, Zavattieri P (eds) Mechanics of composite and multi-functional materials, vol. 7. Z. Y. Springer, Cham, pp 233–240Google Scholar
  94. 94.
    Pepelnjak T, Kuzman K (2012) Recycling of AlMgSi1. Metalurgija 51(4):509–512Google Scholar
  95. 95.
    Galanty M, Kazanowski P, Kansuwan P, Misiolek WZ (2002) Consolidation of metal powders during the extrusion process. J Mater Process Technol 125–126:491–496CrossRefGoogle Scholar
  96. 96.
    Tokarski T, Wedrychowicz M, Wiewiora M (2015) Light metals chips recycling by plastic consolidation. Key Eng Mater 641:24–29CrossRefGoogle Scholar
  97. 97.
    Shamsudin S, Zhong ZW, Rahim SNA, Lajis MA (2017) The influence of temperature and preheating time in extrudate quality of solid-state recycled aluminum. Int J Adv Manuf Technol 90(9–12):2631–2643CrossRefGoogle Scholar
  98. 98.
    ASM International Committee (1991) ASM handbook: heat rreating. 4:3470Google Scholar
  99. 99.
    Hunsicker HY (1984) Metallurgy of heat treatment and general principles of precipitation hardening. In: Hatch JE (ed) Aluminium properties and physical metallurgy. ASM International, pp 134–199Google Scholar
  100. 100.
    Saha PK (2000) Aluminium extrusion technology. ASM International, Materials ParkGoogle Scholar
  101. 101.
    Groover MP (2010) Fundamentals of modern manufacturing material, process and system, 4th edn. John Wiley & Son, USAGoogle Scholar
  102. 102.
    Schikorra M, Donati L, Tomesani L, Kleiner M (2007) The role of friction in the extrusion of AA6060 aluminum alloy, process analysis and monitoring. J Mater Process Technol 191(1–3):288–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Abdullah Wagiman
    • 1
    Email author
  • Mohammad Sukri Mustapa
    • 1
  • Rosli Asmawi
    • 1
  • Shazarel Shamsudin
    • 2
  • Mohd Amri Lajis
    • 2
  • Yoshiharu Mutoh
    • 3
  1. 1.Structural Integrity and Monitoring Research Group (SIMREG), Faculty of Mechanical and Manufacturing EngineeringUniversiti Tun Hussein Onn MalaysiaJohorMalaysia
  2. 2.Sustainable Manufacturing and Recycling Technology, Advanced Material Manufacturing Center (SMART-AMMC)Universiti Tun Hussein Onn MalaysiaJohorMalaysia
  3. 3.Department of System SafetyNagaoka University of TechnologyNiigataJapan

Personalised recommendations