Advertisement

Influence of the heat input and aging treatment on microstructure and mechanical properties of AISI 317 L steel weldments using 0020 robotic–pulsed GMAW

  • P. D. AntunesEmail author
  • C. C. Silva
  • E. O. Correa
  • S. S. M. Tavares
ORIGINAL ARTICLE
  • 47 Downloads

Abstract

In this work, the effect of heat input and aging treatment on the microstructural characteristics and mechanical properties of similar AISI 317L austenitic stainless steel weldments used in the petroleum industry was investigated. The filler metal used was the AWS ER317L electrode at two different heat input levels (4 and 8 kJ/cm) in order to verify the influence of this parameter on the precipitation of deleterious phases. The specimens were aged at 700 °C for 50 and 100 h. Quantification and microchemical mapping of precipitated phases after welding and aging thermal treatment (ATT) were performed. Vickers hardness and tensile tests were used to evaluate the mechanical properties. It was observed that aging promoted a refinement of the base metal region, and all delta ferrite was transformed into sigma phase. The delta ferrite present in the fusion zone was completely transformed into sigma and chi phases. In the aged specimens for 100 h a lower occurrence of the secondary austenite phase (γ2) was identified, which indicates that with the increase of ATT time the dissolution of γ2 occurred in the already precipitated sigma phase. All welding conditions showed an increase in tensile strength, yield limit and hardness with the ATT.

Keywords

AISI 317L stainless steel Similar welding Mechanical and microstructural characterization 

Notes

Acknowledgements

The authors would like to thank the laboratory of Materials of the Federal University of Itajubá, to the Welding Research and Technology Laboratory at the Federal University of Ceará

Funding information

The authors would like to thank the financial support of the Federal Center for Technological Education of Minas Gerais (CEFET-MG) and the Brazilian agencies CNPq, CAPES and FAPEMIG.

References

  1. 1.
    Silva CC, Miranda HC, de Sant’Ana HB, Farias JP (2013) Austenitic and ferritic stainless steel dissimilar weld metal evaluation for the applications as-coating in the petroleum processing equipment. Mater Des 47:1–8CrossRefGoogle Scholar
  2. 2.
    Farneze HN, Tavares SSM, Pardal JM, Barbosa C, Pereira OC, Cunha RPC (2017) Effects of aging at 450 °C on the pitting corrosion resistance and toughness of AISI 317 L steel welded by GTAW and FSW. Mater Res 20(supl. 2).  https://doi.org/10.1590/1980-5373-mr-2016-1007 CrossRefGoogle Scholar
  3. 3.
    Farneze HN, Tavares SSM, Pardal JM, Nascimento RF, Abreu HFG (2016) Degradation of mechanical and corrosion resistance properties of AISI 317 L steel exposed at 550 °C. Eng Fail Anal 61:69–76CrossRefGoogle Scholar
  4. 4.
    Farneze HN, Tavares SSM, Pardal JM, Londono AJR, Pereira VF, Barbosa C (2015) Effects of thermal aging on microstructure and corrosion resistance of AISI 317 L steel weld metal in the FSW process. Mater Res 18(suppl 2):98–103CrossRefGoogle Scholar
  5. 5.
    Prabhu R, Alwarsamy T (2017) Effect of process parameters on ferrite number in cladding of 317 L stainless steel by pulsed MIG welding. J Mech Sci Technol 31(3):1341–1347CrossRefGoogle Scholar
  6. 6.
    Silva CC, Miranda HC, de Sant’Ana HB, Farias JP (2009) Microstructure, hardness and petroleum corrosion evaluation of 316L/AWS E309MoL-16 weld metal. Mater Charact 60(4):346–352CrossRefGoogle Scholar
  7. 7.
    Folkhard E (1988) Welding metallurgy of stainless steels. Springer, ViennaCrossRefGoogle Scholar
  8. 8.
    Di Schino A, Mecozzi MG, Barteri M, Kenny JM (2000) Solidification mode and residual ferrite in low-Ni austenitic stainless steels. J Mater Sci 35(2):375–380CrossRefGoogle Scholar
  9. 9.
    Machado JPSE (2006) Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel. Mater Res 9(2):137–142CrossRefGoogle Scholar
  10. 10.
    Brooks JA, Yang NCY, Krafcik JS (2001) Clarification on development of skeletal and lathy ferrite morphologies in stainless steel welds. Sci Technol Weld Join 6:412–414CrossRefGoogle Scholar
  11. 11.
    Tavares SSM, Feijó GF, Farneze HN, Sandim MJR, Filho IRS (2017) Influence of Microstructure on the Corrosion Resistance of AISI 317 L (UNS S31703). Mater Res 20(2):108–114CrossRefGoogle Scholar
  12. 12.
    Kazasidis ME, Pantelis DI (2017) The effect of the heat input energy on the tensile properties of the AH-40 fatigue crack arrester steel, welded by use of the robotic metal-cored arc welding technique. Int J Adv Manuf Technol 93:3967–3980CrossRefGoogle Scholar
  13. 13.
    Tumer M, Yilmaz R (2016) Characterization of microstructure, chemical composition, and toughness fo a multipass welded joint of austenitic stainless steel AISI 316 L. Int J Adv Manuf Technol 87:2567–2579CrossRefGoogle Scholar
  14. 14.
    Palani PK, Murugan N (2007) Modeling and simulation of wire feed rate for steady current and pulsed current gas metal arc welding using 317 L flux cored wire. Int J Adv Manuf Technol 34:1111–1119CrossRefGoogle Scholar
  15. 15.
    Farneze HN, Tavares SSM, Pardal JM, de Souza GC (2014) Effects of thermal aging on microstructure and corrosion resistance of AISI 317L steel weld metal. Soldag Insp 19(03):231–237CrossRefGoogle Scholar
  16. 16.
    Avelino AF Jr (2011) Analisys of intergranular corrosion susceptibility of stainless steels: AISI 317 and AISI 317 L. dissertation. Universidade Federal do CearáGoogle Scholar
  17. 17.
    Miná ME, Cruz SY, Ferreira MM, Miranda HC, Dille J, Silva CC (2017) Electron detection modes comparison for quantification of secondary phases of Inconel 686 weld metal. Mater Charact 133:10–16CrossRefGoogle Scholar
  18. 18.
    Albuquerque VHC, Cortez PC, Alexandria AR, Aguiar WM, Silva EM (2007) Sistema de segmentação de imagens para quantificação de microestruturas em metais utilizando redes neurais artificiais. Matéria 12(2):394–407 (in Portuguese)Google Scholar
  19. 19.
    American Society For Testing And Materials (1993) Standard practices for detecting susceptibility to intergranular attack in stainless steels. p. 262-93aGoogle Scholar
  20. 20.
    Nage D, Mhaiskar AG, Raman R, Raja VS (2004) Effect of 0.1 wt% on the pitting and SCC behaviour of as-welded and post weld heat treated austenitic stainless steel weld. Trans Indian Inst Met 57(23):123–132Google Scholar
  21. 21.
    Phillips NSL (2006) Phase transformation in cast super austenitic stainless steel. Master Dissertation. Iowa State University, AmesGoogle Scholar
  22. 22.
    Kasper JS (1954) The ordering of atoms in the chi-phase of the iron-chromiummolybdenum system. Acta Metall 2:456–461CrossRefGoogle Scholar
  23. 23.
    Joubert J-M, Phejar M (2009) The crystal chemistry of the χ phase. Prog Mater Sci 54:945–980CrossRefGoogle Scholar
  24. 24.
    Kasper JS, Waterstrat RM (1956) Ordering of atoms in the σ phase. Acta Crystallogr 9:289–295CrossRefGoogle Scholar
  25. 25.
    Joubert J-M (2008) Crystal chemistry and Calphad modelling of the σ phase. Prog Mater Sci 53:528–583CrossRefGoogle Scholar
  26. 26.
    Michalska J, Sozanska M (2006) Qualitative and quantitativeanalysis ofσ and χ phases in 2205 duplex stainless steel. Mater Charact 56:355–362CrossRefGoogle Scholar
  27. 27.
    Escriba DM, Materna-Morris E, Plaut RL, Padilha AF (2009) Chi-phase precipitation in a duplex stainless steel. Mater Charact 60(11):1214–1219CrossRefGoogle Scholar
  28. 28.
    Ghosh SK, Mondal S (2008) High temperature ageing behaviour of a duplex stainless steel. Mater Charact 59:1776–1783CrossRefGoogle Scholar
  29. 29.
    Llorca-Isern N, López-Luque H, López-Jiménez I, Biezma MV (2016) Identification of sigma and chi phases in duplex stainless steels. Mater Charact 112:20–29CrossRefGoogle Scholar
  30. 30.
    Lagneborg R (1991) The physical metallurgy of stainless steels (1991) Proceedings of international conference on stainless steels. Chiba, Japan, pp 11–24Google Scholar
  31. 31.
    Plaut RL, Herrera C, Escriba DM, Rios PR, Padilha AF (2007) A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res 10(4):453–460.  https://doi.org/10.1590/S1516-14392007000400021 CrossRefGoogle Scholar
  32. 32.
    Schwind M, Källqvist J, Nilsson JO, Ågren J, Andrén HO (2000) σ-phase precipitation in stabilized austenitic stainless steels. Acta Mater 48:2473–2481CrossRefGoogle Scholar
  33. 33.
    Perron A, Toffolon-Masclet C, Ledoux X, Buy F, Guilbert T, Urvoy S, Bosonnet S, Marini B, Cortial F, Texier G, Harder C, Vignal V, Ph P, Farré J, Suzon E (2014) Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations. Acta Mater 79:16–29CrossRefGoogle Scholar
  34. 34.
    Pohl M, Storz O, Glogowski T (2007) Effect of intermetallic precipitations on the of duplex stainless steel. Mater Charact 58:65–71CrossRefGoogle Scholar
  35. 35.
    Nilsson JO. 1992 Super duplex stainless steels. Mater Sci Technol.8:685–700.CrossRefGoogle Scholar
  36. 36.
    Martins M, Casteletti LC (2005) Heat treatment temperature influence on ASTM A890 GR 6A superduplex stainless steel. Mater Charact 55:225–233CrossRefGoogle Scholar
  37. 37.
    Lee KM, Cho HS, Choi DC (1999) Effect of isothermal treatment of SAF 2205 duplex stainless steel on migration of δ/γ interface boundary and growth of austenite. J Alloys Compd 285:156–161CrossRefGoogle Scholar
  38. 38.
    Goldschmidt HJ (1967) Interstitial alloys. Butterworths, London, pp 126–130CrossRefGoogle Scholar
  39. 39.
    de Albuquerque VHC, Silva CC, Menezes TIS, Farias JP, Tavares JMRS (2011) Automatic evaluation of nickel alloy secondary phases from SEM images. Microsc Res Tech 74:36–46CrossRefGoogle Scholar
  40. 40.
    Villanueva D, Junior FCP, Lesley R, Padilha AF (2006) Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex. Mater Sci Technol 22(9):1098–1104CrossRefGoogle Scholar
  41. 41.
    Padilha AF, Escriba DM, Materna-Morris E, Rieth M, Klimenkov M (2007) Precipitation in AISI 316 L(N) during creep tests at 550 and 600 °C up to 10 years. J Nucl Mater 1(362):132–138CrossRefGoogle Scholar
  42. 42.
    Pohl M, Storz O, Glogowski T (2008) σ-phase morphologies and their effect on mechanical properties of duplex stainless steels. Int J Mater Res 99:1163–1170CrossRefGoogle Scholar
  43. 43.
    Chandra K, Kain V, Buthani V, Raja VS, Tewari R, Dey GK, Chakravartty JK (2012) Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties. Mater Sci Eng A 534:163–175CrossRefGoogle Scholar
  44. 44.
    Bouchouicha B, Mokhtar Z, Mohamed B, Imad A (2009) Influence of the ferrite rate on the tenacity of a welded joint in austenitic stainless steel: Experimental study and numerical modelling. Comput Mater Sci 45(2):336–341CrossRefGoogle Scholar
  45. 45.
    Luppo MI, Hazarabedian A, Ovejero-Garcia J (1999) Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds. Corros Sci 41(1):87–103CrossRefGoogle Scholar
  46. 46.
    Moura VS, Lima LD, Pardal JM, Kina AY, Corte RRA, Tavares SSM (2007) Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803. Mater Charact 59:1127–1132CrossRefGoogle Scholar
  47. 47.
    Modenesi PJ, Marques PV, Santos DB (2012) Introdução à Metalurgia da Soldagem, Belo Horizonte (in Portuguese)Google Scholar
  48. 48.
    Hau J, Seijas A (2006) Sigma phase embrittlement of stainless steel in FCC service. Corrosion 06578:1–22Google Scholar
  49. 49.
    Shargay AC, Singh A (2002) Thick wall stainless steels piping in hydroprocessing units - heat treatment issues. Corrosion 02478:1–12Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.General Education DepartmentFederal Center for Technological Education of Minas Gerais—CEFET/MGVarginhaBrazil
  2. 2.Welding Research and Technology Laboratory (LPTS)Universidade Federal do Ceará UFCFortalezaBrazil
  3. 3.Departamento de Engenharia MecanicaUniversidade Federal de ItajubaItajubáBrazil
  4. 4.Escola de Engenharia,Rua Passo da PatriaUniversidade Federal FluminenseNiteroiBrazil

Personalised recommendations