Advertisement

Ambient and non-ambient temperature depth-sensing indentation of Mg-Sm2O3 nanocomposites

  • M. HaghshenasEmail author
  • M. Muhammad
  • V. Hasannaeimi
  • S. Mukherjee
  • M. Gupta
ORIGINAL ARTICLE
  • 3 Downloads

Abstract

Magnesium matrix nanocomposites (Mg-Sm2O3 nanocomposites in the present study), containing nanosize reinforcements within the magnesium or magnesium alloy matrix, are a group of energy-saving novel material with enhanced strength-to-weight ratio. However, in order to scale up the applications of the magnesium nanocomposites toward industrial dimensions, detailed response of the materials at ambient and elevated temperatures must be established. Having said this, the primary objective of this paper is to obtain an in-depth understanding of small-scale property–microstructure-composition correlation at ambient (298 K) temperature up to 473 K using a depth sensing nanoindentation testing approach as well as advanced microstructural characterization. Mg-Sm2O3 nanocomposites with 0.5, 1.0, and 1.5 vol% Sm2O3 were compared against pure Mg. The properties measured are reduced modulus, elastic modulus, hardness, indentation creep rate, indentation creep exponent, thermal activation volume, as well as indentation size effect as a function of temperature. Pure Mg and Mg-1.0 Sm2O3 nanocomposite provided the least and the greatest creep resistance, respectively. This is attributed to the presence of thermally stable Sm2O3 nanoparticles which can effectively produce dislocation pile-ups and dislocation tangling.

Keywords

Mg-Sm2O3 nanocomposite Indentation creep Nanoindentation High temperature Reduced modulus 

Notes

References

  1. 1.
    Pollock TM (2010) Weight loss with magnesium alloys. Science 328:986–987CrossRefGoogle Scholar
  2. 2.
    Lu K (2010) The future of metals. Science 328:319–320CrossRefGoogle Scholar
  3. 3.
    Nie JF, Zhu YM, Liu JZ, Fang XY (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340:957–960CrossRefGoogle Scholar
  4. 4.
    Erbel R, di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R, PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) Investigators (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875CrossRefGoogle Scholar
  5. 5.
    Knochel P (2009) Nat Chem 1:740CrossRefGoogle Scholar
  6. 6.
    Nie J-F (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43:3891–3939CrossRefGoogle Scholar
  7. 7.
    Goh CS, Wei J, Lee LC, Gupta M (2006) Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A 423:153–156CrossRefGoogle Scholar
  8. 8.
    Hassan SF, Gupta M (2006) Effect of length scale of Al2O3 particulates on microstructural and tensile properties of elemental mg. Mater Sci Eng A 425:22–27CrossRefGoogle Scholar
  9. 9.
    Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306CrossRefGoogle Scholar
  10. 10.
    Ghasemi A, Penther D, Kamrani S (2018) Mater Charact 142:137–143CrossRefGoogle Scholar
  11. 11.
    Mirza FA, Chen DL (2015) A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites. Materials 8:5138–5153.  https://doi.org/10.3390/ma8085138 CrossRefGoogle Scholar
  12. 12.
    Ferkel H, Mordike BL (2001) Mater Sci Eng A 298:193–199CrossRefGoogle Scholar
  13. 13.
    Katsarou L, Mounib M, Lefebvre W, Vorozhtsov S, Pavese M, Badini C, Molina-Aldareguia JM, Jimenez CC, Prado MTP, Dieringa H (2016) Materials Science & Engineering A 659:84–92CrossRefGoogle Scholar
  14. 14.
    Sourav G, Mondal AK (2018) Mater Sci Eng A 718:377–389CrossRefGoogle Scholar
  15. 15.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564–1583CrossRefGoogle Scholar
  16. 16.
    Wang CL, Lai YH, Huang JC, Nieh TG (2010) Scr Mater 62:175–178CrossRefGoogle Scholar
  17. 17.
    Su CJ, Herbert E, Sohn S, Manna JAL, Oliver WC, Pharr GM, Mech Phys J (2013) Sol. 61:517–536Google Scholar
  18. 18.
    Liu X, Zhang Q, Zhao X, Yang X, Luo L (2016) Mater Sci Eng A 676:73–79CrossRefGoogle Scholar
  19. 19.
    Haghshenas M, Islam R, Wang Y, Cheng YT, Gupta M (2018) J Compos Mater.  https://doi.org/10.1177/0021998318808358 CrossRefGoogle Scholar
  20. 20.
    Haghshenas M, Wang Y, Cheng Y-T, Gupta M (2018) Mater Sci Eng A 716:63–71CrossRefGoogle Scholar
  21. 21.
    Sankaranarayanan S, Gupta M (2015) Powder Metall 58:183–192CrossRefGoogle Scholar
  22. 22.
    Kujur MS, Mallick A, Manakari V, Parande G, Tun KS, Gupta M (2017) Metals 7:357.  https://doi.org/10.3390/met7090357 CrossRefGoogle Scholar
  23. 23.
    Fei W, Kewei X (2004) Mater Lett 58:2345–2349CrossRefGoogle Scholar
  24. 24.
    Zhu X, Liu X, Zeng F, Pan F (2010) Mater Lett 64:53–56CrossRefGoogle Scholar
  25. 25.
    Shen BL, Itoi T, Yamasaki T, Ogino Y (2000) Scr Mater 42:893–898CrossRefGoogle Scholar
  26. 26.
    Li WB, Henshall JL, Hooper RM, Easterling KE (1991) Acta Mater 39:3099–3110CrossRefGoogle Scholar
  27. 27.
    Sargent PM, Ashby M (1992) Indentation creep. Mater Sci Technol 8:594–601CrossRefGoogle Scholar
  28. 28.
    Mayo M, Siegel R, Narayanasamy A, Nix W (1990) J Mater Res 5:1073–1082CrossRefGoogle Scholar
  29. 29.
    Mahmudi R, Geranmayeh AR, Khanbareh H, Jahangiri N (2009) Mater Des 30:574–580CrossRefGoogle Scholar
  30. 30.
    Mukherjee AK, Bird JE, Dorn JE (1969) Trans ASM 62:155–179Google Scholar
  31. 31.
    Reed-Hill RE, Abbaschian R, Abbaschian R (1973) Physical metallurgy principles. Cengage Learning, Stamford, CT, USAGoogle Scholar
  32. 32.
    Robson JD, Henry DT, Davis B (2009) Acta Mater 57:2739–2747CrossRefGoogle Scholar
  33. 33.
    Parande G, Manakari V, Wakeel S, Kujur MS, Gupta M (2018) Metals 8(12):1014.  https://doi.org/10.3390/met8121014 CrossRefGoogle Scholar
  34. 34.
    Gupta M, Ling M (2011) Magnesium technology. Wiley-VCH, WeinheimGoogle Scholar
  35. 35.
    Hassan SF, Gupta M (2005) Mater Sci Eng 392:163–168CrossRefGoogle Scholar
  36. 36.
    Goh CS, Wei J, Lee LC, Gupta M (2007) Acta Mater 55:5115–5121CrossRefGoogle Scholar
  37. 37.
    Tun KS, Jayaramanavar P, Nguyen QB, Chan J, Kwok R, Gupta M (2011) Mater Sci Technol 28:582–588CrossRefGoogle Scholar
  38. 38.
    Zhong XL, Wong WLE, Gupta M (2007) Acta Mater 55:6338–6344CrossRefGoogle Scholar
  39. 39.
    Haghshenas M, Gupta M (2019) Def Technol.  https://doi.org/10.1016/j.dt.2018.08.008 CrossRefGoogle Scholar
  40. 40.
    Saboori A, Padovano E, Pavese M, Badini C (2018) Materials (Basel) 11(1):27.  https://doi.org/10.3390/ma11010027 CrossRefGoogle Scholar
  41. 41.
    Nie KB, Wang XJ, Wu K, Hu XS, Zheng MY (2012) Mater Sci Eng A 540:123–129CrossRefGoogle Scholar
  42. 42.
    Musil J, Kunc F, Zeman H, Polakova H (2002) Surf Coat Technol 154:304–313CrossRefGoogle Scholar
  43. 43.
    Maja ME, Falodun OE, Obadele BA, Oke SR, Olubambi PA (2018) Ceramics International 44:4419–4425CrossRefGoogle Scholar
  44. 44.
    Greer JR, Oliver WC, Nix ED (2005) Acta Mater 23:1821–1830CrossRefGoogle Scholar
  45. 45.
    Nix WD, Gao HJ (1998) Mech Phys Solids 46:411–425CrossRefGoogle Scholar
  46. 46.
    Oliver F, Trenkle JC, Schuh CA (2010) J Mater Res 25(7):1225–1229CrossRefGoogle Scholar
  47. 47.
    Prasitthipayong A, Vachhani SJ, Tumey SJ, Minor AM, Hosemann P (2018) Acta Mater 144:896–904CrossRefGoogle Scholar
  48. 48.
    Sherby OD, Burke PM (1968) Prog Mater Sci 13:325–389CrossRefGoogle Scholar
  49. 49.
    Mohamed FA, Park KT, Lavernia EJ (1992) Mater Sci Eng A 150:21–35CrossRefGoogle Scholar
  50. 50.
    Weertman J (1957) J. Appl. Phys. 28(3):362–364CrossRefGoogle Scholar
  51. 51.
    Weertman J (1957) Appl Phys 28(4):1185–1189CrossRefGoogle Scholar
  52. 52.
    Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K (2005) Mater Sci Eng A 407:53–61CrossRefGoogle Scholar
  53. 53.
    Kumar H, Chaudhari GP (2014) Mater Sci Eng A607:435–444CrossRefGoogle Scholar
  54. 54.
    Lu S, Foo AQ, Wang S, Chen Z (2017) J Alloys Compd 729:498–506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • M. Haghshenas
    • 1
    Email author
  • M. Muhammad
    • 2
  • V. Hasannaeimi
    • 3
  • S. Mukherjee
    • 3
  • M. Gupta
    • 4
  1. 1.Micro/Nano-Mechanics Laboratory, Department of Mechanical EngineeringUniversity of ToledoToledoUSA
  2. 2.Department of Mechanical EngineeringAuburn UniversityAuburnUSA
  3. 3.Department of Mechanical EngineeringUniversity of North TexasDentonUSA
  4. 4.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations