Advertisement

Dry hyperbaric welding of HSLA steel up to 35 bar ambient pressure with CMT arc mode

  • Ivan BunazivEmail author
  • Ragnhild Aune
  • Vigdis Olden
  • Odd M. Akselsen
ORIGINAL ARTICLE
  • 45 Downloads

Abstract

Hyperbaric welding plays a significant role in subsea pipeline installations and repairs for transport of oil and gas from the offshore field to the market. The effect of ambient pressure, from 1 to 35 bar, on penetration depth and microstructure evolution in dry hyperbaric welding of X70 pipeline steel has been investigated. It was found that penetration depth is increasing with increased ambient pressure due to enhanced melt flow by using the cold metal transfer (CMT) arc mode. Increase ambient pressure lowered process stability causing more spattering strongly affecting current/voltage characteristics of the arc. Numerical simulation showed very fast cooling rate regardless ambient pressure effect causing hard microstructure. Application of lower alloyed wire provided lower hardenability and higher fraction of the allotriomorphic ferrite with high acicular ferrite volume fraction. Chemical analysis revealed positive effect of low oxygen/nickel with high silicon containing wire for acicular ferrite nucleation in weld metal at any process parameters due to higher activity of inclusions.

Keywords

Dry hyperbaric welding Cold metal transfer Numerical simulation Microstructure HSLA steel Non-metallic inclusions 

Nomenclature

Cp

Specific heat (J kg−1 °C−1)

FEM

Electromagnetic force (N m−3)

f

Mass proportion of molten material

g

Standard acceleration due to gravity (9.8 m s−2)

H

Enthalpy (kg m2 s−2)

HL

Latent heat of fusion (230,000 J kg−1 °C−1)

hc

Heat transfer coefficient for convection (50 W m−2 °C−1)

I

Arc current (A)

k

Thermal conductivity (W m−1 °C−1)

LB

Characteristic length which is approximated by 1/8 of weld pool width (m)

LP

Length of weld pool (m)

n

Outward normal vector of top surface

P

Power of the Gaussian surface heat source (W)

PA

Arc pressure (N m−2)

Qin

Heat input of the volumetric heat source model (kJ/mm)

Qt

Total heat flux of the heat source (W m−3)

r

Radius of the Gaussian surface heat source (m)

R1

Radius of arc at welding electrode (m)

R2

Radius of arc at weld pool surface (m)

T0

Ambient temperature (20 °C)

TL

Liquidus temperature (1512 °C)

TS

Solidus temperature (1472 °C)

U

Arc voltage (V)

vd

Momentum diffusitivity or kinematic viscosity (m2 s−1)

vmax

Characteristic (or maximum) melt velocity in weld pool (m s−1)

vt

Volumetric heat source travel speed (mm/min)

Greek symbols

α

Thermal diffusivity (m2 s−1)

β

Thermal expansion coefficient (1.0 × 10−5 m m−1 °C−1)

ΔT

Temperature difference of maximum temperature in weld pool and solidus temperature (°C)

dγ/dT

Thermal gradient of surface tension (− 0.35 × 10−4 N m−1 °C−1)

ε

Emissivity rate (0.5)

η

Arc efficiency (0.8 for GMAW process)

μ0

Permeability in a vacuum (1.257 × 10−6 N A−2)

μd

Dynamic viscosity of the liquid metal (N s m−2)

μL

Viscosity of the liquid metal (3 × 10−2 kg m−1 s−1)

μm

Magnetic permeability (1.26 × 10−6 N A−2)

ρL

Density of the liquid metal (6800 kg m−3)

ρS

Density of the solid metal (7800 kg m−3)

σ

Stefan-Boltzmann constant (5.67 × 10−8 W m−2 °C−4)

Notes

Acknowledgments

SINTEF Molab AS is appreciated for oxygen content measurements. Sigurd Wenner (SINTEF Industry) is appreciated for SEM and EDS data.

Funding information

The authors received funding from the Research Council of Norway through the Petromaks 2 Programme, Contract No. 234110/E30. The financial support was also received from Statoil Petroleum AS, Gassco AS, Technip Norge AS, EFD Induction AS, and Pohang Iron and Steel Company Posco.

References

  1. 1.
    Richardson IM, Woodward NJ, Armstrong MA, Berge JO (2010) Developments in dry hyperbaric welding. in 3rd International Workshop on Stat-of-the-Art Science and Reliability of Underwater Welding and Inspection Technology. Houston, Texas, USAGoogle Scholar
  2. 2.
    Hart PR (1999) A study of non-consumable welding processes for diverless deepwater hyperbaric welding to 2500 m water depth. Cranfield UniversityGoogle Scholar
  3. 3.
    Akselsen OM, Aune R, Fostervoll H, Harsvoer AS (2006) Dry hyperbaric welding of subsea pipelines. Weld J 85(6):52–55Google Scholar
  4. 4.
    Azar AS (2012) Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling. In: Department of Engineering Design and Materials. Norwegian University of Science and Technology (NTNU), TrondheimGoogle Scholar
  5. 5.
    Richardson IM, Nixon JH (1997) Deepwater hyperbaric welding – initial process evaluation. In: Proc. 7th International Conf. on Offshore and Polar Engineering (ISOPE). Honolulu, Hawaii, USAGoogle Scholar
  6. 6.
    Ofem U, Ganguly S, Williams S, Woodward N (2014) Investigation of thermal cycle and metallurgical characteristics of hyperbaric gas metal arc welding. In: International Journal of Offshore and Polar Engineering (ISOPE). International Society of Offshore and Polar Engineers, p 207-212Google Scholar
  7. 7.
    Azar AS, Akselsen OM, Fostervoll H (2012) Prediction of the thermal cycles in dry hyperbaric GMA welding using partial differential heat transfer equations. In: International conference; 9th, Trends in welding research; 2012; Chicago, IL. Materials Park, ASM InternationalGoogle Scholar
  8. 8.
    Nixon JH (1995) Underwater repair technology. Gulf Professional Publishing, p 108Google Scholar
  9. 9.
    Richardson IM, Nixon JH (1985) Open arc pulsed current GMAW: application to hyperbaric welding operations. In: ASM International Welding Conference. Toronto, CanadaGoogle Scholar
  10. 10.
    Schörghuber M (2005) Inventor cold-metal-transfer welding process and welding installation patent, US20090026188 A1Google Scholar
  11. 11.
    Chen M, Zhang D, Wu C (2017) Current waveform effects on CMT welding of mild steel. J Mater Process Technol 243:395–404CrossRefGoogle Scholar
  12. 12.
    Feng J, Zhang H, He P (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30(5):1850–1852CrossRefGoogle Scholar
  13. 13.
    Pickin CG, Williams SW, Lunt M (2011) Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J Mater Process Technol 211(3):496–502CrossRefGoogle Scholar
  14. 14.
    Wang P, Hu S, Shen J, Liang Y (2017) Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy. J Mater Process Technol 245:122–133CrossRefGoogle Scholar
  15. 15.
    Zhang C, Li Y, Gao M, Zeng X (2018) Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A 711:415–423CrossRefGoogle Scholar
  16. 16.
    Ryan EM, Sabin TJ, Watts JF, Whiting MJ (2018) The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Technol 262:577–584CrossRefGoogle Scholar
  17. 17.
    Zhang B, Wang C, Wang Z, Zhang L, Gao Q (2019) Microstructure and properties of Al alloy ER5183 deposited by variable polarity cold metal transfer. J Mater Process Technol 267:167–176CrossRefGoogle Scholar
  18. 18.
    Ali Y, Henckell P, Hildebrand J, Reimann J, Bergmann JP, Barnikol-Oettler S (2019) Wire arc additive manufacturing of hot work tool steel with CMT process. J Mater Process Technol 269:109–116CrossRefGoogle Scholar
  19. 19.
    Zhang X, Zhou Q, Wang K, Peng Y, Ding J, Kong J, Williams S (2019) Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing. Mater Des 166:107611CrossRefGoogle Scholar
  20. 20.
    Xu X, Ding J, Ganguly S, Williams S (2019) Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process. J Mater Process Technol 265:201–209CrossRefGoogle Scholar
  21. 21.
    Woodward NJ, Fostervoll H, Akselsen OM, Ahlen CH, Berge JO, Armstrong M (2007) Inconel 625 performance as hyperbaric GMA welding consumable for diverless retrofit tee hot tap applications. In: International Society of Offshore and Polar Engineers (ISOPE). Lisbon, Portugal.Google Scholar
  22. 22.
    Bhadeshia HKDH, Honeycombe RWK (2006) Steels: microstructure and properties, 3rd edn. Butterworth-HeinemannGoogle Scholar
  23. 23.
    DebRoy T, David SA (1995) Physical processes in fusion welding. Rev Mod Phys 67(1):85–112CrossRefGoogle Scholar
  24. 24.
    Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40(1):R1CrossRefGoogle Scholar
  25. 25.
    Planckaert J-P, Djermoune E-H, Brie D, Briand F, Richard F (2010) Modeling of MIG/MAG welding with experimental validation using an active contour algorithm applied on high speed movies. Appl Math Model 34(4):1004–1020CrossRefGoogle Scholar
  26. 26.
    Pitscheneder W, DebRoy T, Mundra K, Ebner R (1996) Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels. Weld J 75:71–80Google Scholar
  27. 27.
    Zhang W, Kim C-H, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding—Part II: application to fillet welding of mild steel. J Appl Phys 95(9):5220–5229CrossRefGoogle Scholar
  28. 28.
    Li M, Brooks JA, Atteridge DG, Porter WD (1997) Thermophysical property measurements on low alloy high strength carbon steels. Scr Mater 36(12):1353–1359CrossRefGoogle Scholar
  29. 29.
    Miettinen J, Louhenkilpi S (1994) Calculation of thermophysical properties of carbon and low alloyed steels for modeling of solidification processes. Metall Mater Trans B 25(6):909–916CrossRefGoogle Scholar
  30. 30.
    Arora A, Roy GG, DebRoy T (2009) Unusual wavy weld pool boundary from dimensional analysis. Scr Mater 60(2):68–71CrossRefGoogle Scholar
  31. 31.
    DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224CrossRefGoogle Scholar
  32. 32.
    Mishra S, Lienert TJ, Johnson MQ, DebRoy T (2008) An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations. Acta Mater 56(9):2133–2146CrossRefGoogle Scholar
  33. 33.
    Robert A, Debroy T (2001) Geometry of laser spot welds from dimensionless numbers. Metall Mater Trans B 32(5):941–947CrossRefGoogle Scholar
  34. 34.
    Goldak J, Akhlaghi M (2005) Computational welding mechanics. SpringerGoogle Scholar
  35. 35.
    Aarbogh HM, Hamide M, Fjær HG, Mo A, Bellet M (2010) Experimental validation of finite element codes for welding deformations. J Mater Process Technol 210(13):1681–1689CrossRefGoogle Scholar
  36. 36.
    Azar AS, Ås SK, Akselsen OM (2012) Determination of welding heat source parameters from actual bead shape. Comput Mater Sci 54:176–182CrossRefGoogle Scholar
  37. 37.
    Azar AS (2015) A heat source model for cold metal transfer (CMT) welding. J Therm Anal Calorim 122(2):741–746CrossRefGoogle Scholar
  38. 38.
    Lindgren L-E (2007) Computational welding mechanics. Woodhead Publishing, pp 47–53Google Scholar
  39. 39.
    Azar AS, Woodward N, Fostervoll H, Akselsen OM (2012) Statistical analysis of the arc behavior in dry hyperbaric GMA welding from 1 to 250 bar. J Mater Process Technol 212(1):211–219CrossRefGoogle Scholar
  40. 40.
    Enjo T, Kikuchi Y, Horinouchi H, Ueda H (1987) MIG Welding under high pressure arc arc atmosphere. Trans JWRI 16(2):267–276Google Scholar
  41. 41.
    Weman K (2006) MIG welding guide. CRC PressGoogle Scholar
  42. 42.
    Dos Santos EBF, Kuroiwa LH, Ferreira AFC, Pistor R, Gerlich AP (2017) On the visualization of gas metal arc welding plasma and the relationship between arc length and voltage. Appl Sci 7(5)CrossRefGoogle Scholar
  43. 43.
    Cho DW, Lee SH, Na SJ (2013) Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding. J Mater Process Technol 213(2):143–152CrossRefGoogle Scholar
  44. 44.
    Cheon J, Kiran DV, Na S-J (2016) CFD based visualization of the finger shaped evolution in the gas metal arc welding process. Int J Heat Mass Transf 97:1–14CrossRefGoogle Scholar
  45. 45.
    Kozakov R, Schöpp H, Gött G, Sperl A, Wilhelm G, Uhrlandt D (2013) Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases. J Phys D Appl Phys 46(47):475501CrossRefGoogle Scholar
  46. 46.
    Tsao KC, Wu CS (1988) Fluid flow and heat transfer in GMA weld pools. Weld J 67:70–76Google Scholar
  47. 47.
    Guojin L, Peilei Z, Xi W, Yunpeng N, Zhishui Y, Hua Y, Qinghua L (2018) Gap bridging of 6061 aluminum alloy joints welded by variable-polarity cold metal transfer. J Mater Process Technol 255:927–935CrossRefGoogle Scholar
  48. 48.
    Lin ML, Eagar TW (1985) Influence of arc pressure on weld pool geometry. Weld J 64(6):163–169Google Scholar
  49. 49.
    Rokhlin SA, Guu C (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Weld J 72(8):381–390Google Scholar
  50. 50.
    Fairchild DP, Bangaru NV, Koo JY, Harrison PL, Ozekcin A (1991) A study concerning intercritical HAZ microstructure and toughness in HSLA steels. Weld J 471(12):321–329Google Scholar
  51. 51.
    Bunaziv I, Akselsen OM, Frostevarg J, Kaplan AFH (2018) Laser-arc hybrid welding of thick HSLA steel. J Mater Process Technol 259:75–87CrossRefGoogle Scholar
  52. 52.
    Ricks RA, Howell PR, Barritte GS (1982) The nature of acicular ferrite in HSLA steel weld metals. J Mater Sci 17(3):732–740CrossRefGoogle Scholar
  53. 53.
    Kluken AO, Grong Ø (1989) Mechanisms of inclusion formation in Al − Ti − Si − Mn deoxidized steel weld metals. Metall Trans A 20(8):1335–1349CrossRefGoogle Scholar
  54. 54.
    Shim JH, Oh YJ, Suh JY, Cho YW, Shim JD, Byun JS, Lee DN (2001) Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Mater 49(12):2115–2122CrossRefGoogle Scholar
  55. 55.
    Zhang D, Terasaki H, Komizo Y-I (2010) In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C–Mn steel. Acta Mater 58(4):1369–1378CrossRefGoogle Scholar
  56. 56.
    van der Eijk C, Grong O, Walmsley J (2000) Mechanisms of inclusion formation in low alloy steels deoxidised with titanium. Mater Sci Technol 16(1):55–64CrossRefGoogle Scholar
  57. 57.
    Sarma DS, Karasev AV, Jönsson PG (2009) On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int 49(7):1063–1074CrossRefGoogle Scholar
  58. 58.
    Babu SS, Bhadeshia HKDH (1990) Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits. Mater Sci Technol 6(10):1005–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Ivan Bunaziv
    • 1
    Email author
  • Ragnhild Aune
    • 1
  • Vigdis Olden
    • 1
  • Odd M. Akselsen
    • 1
  1. 1.SINTEF IndustryTrondheimNorway

Personalised recommendations