Advertisement

An approach to partition workpiece CAD model towards 5-axis support-free 3D printing

  • Hao LiuEmail author
  • Lei LiuEmail author
  • Dawei Li
  • Renkai Huang
  • Ning Dai
ORIGINAL ARTICLE
  • 39 Downloads

Abstract

This paper presents a new method to fabricate workpieces using a 5-axis printing equipment with similar movement way of 5-axis milling machine tools. The method includes two main steps: (i) CAD model is partitioned into several sub-parts using a gravity effect partition method simulating the material-falling process when the model is stacked along the Z direction. In our processing plan, every sub-part has a slice direction. Before printing a sub-part, we rotate A axis and C axis so that its slice direction exactly coincides with the Z axis positive direction and then materials are stacked along the slice direction; (ii) these sub-parts are sorted with printing-base constraint and interference-free constraint. The two constraints, respectively, mean that the previously printed sub-parts are used as the printing bases of subsequently printed sub-parts; there is no interference between printed sub-parts and the printer head. These partition and sort principles have been generalized as an optimization model to satisfy printing-base constraint, interference-free constraint, and shortest empty printing path constraint. Our printing processing-plan can be regarded as a process to solve the optimization model. We have successfully generated sub-part sequences for some CAD models with large overhangs and complex structures to verify the printing processing-plan method.

Keywords

3D printing Gravity effect partition Support-free Processing plan 

Notes

Funding information

This project is supported by National Natural Science Foundation of China (Grant No. 51975281). Jiangsu Jiuyu Machinery Limited Company presents equipment for the research.

References

  1. 1.
    Livesu M, Ellero S, Martinez J, Lefebvre S, Attene M (2017) From 3D models to 3D prints: an overview of the processing pipeline. Comput Graph Forum 36(2):537–564CrossRefGoogle Scholar
  2. 2.
    Wei X, Qiu S, Zhu L, Feng R, Tian Y, Xi J, Zheng Y (2018) Toward Support-Free 3D Printing: A Skeletal Approach for Partitioning Models. IEEE Trans Vis Comput Graph 24(10):2799–2812CrossRefGoogle Scholar
  3. 3.
    Dai C, Wang CL, Wu C, Lefebvre S, Fang X, Liu Y (2018) Support-free volume printing by multi-axis motion. ACM Trans Graph 37(4):134CrossRefGoogle Scholar
  4. 4.
    Bahnini I, Rivette M, Rechia A, Siadat A, Elmesbahi A (2018) Additive manufacturing technology: the status, applications, and prospects. Int J Adv Manuf Technol 97(1):147–161CrossRefGoogle Scholar
  5. 5.
    Fang M, Chandra S, Park CB (2008) Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyp J 14(1):44–52CrossRefGoogle Scholar
  6. 6.
    Spencer JD, Dickens PM, Wykes CM (1998) Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng B J Eng Manuf 212(3):175–182CrossRefGoogle Scholar
  7. 7.
    Shen H, Ye X, Fu J (2018) Research on the flexible support platform for fused deposition modeling. Int J Adv Manuf Technol 97(12):3205–3221Google Scholar
  8. 8.
    Hildebrand K, Bickel B, Alexa M (2013) Orthogonal slicing for additive manufacturing. Comput Graph 37(6):669–675CrossRefGoogle Scholar
  9. 9.
    Keating S, Oxman N (2013) Compound fabrication: A multi-functional robotic platform for digital design and fabrication. Robot Comput Integr Manuf 29(6):439–448CrossRefGoogle Scholar
  10. 10.
    Song P, Deng B, Wang Z, Dong Z, Li W, Fu C, Liu L (2016) CofiFab: coarse-to-fine fabrication of large 3D objects. ACM Trans Graph 35(4):45–58CrossRefGoogle Scholar
  11. 11.
    Pan Y, Zhou C, Chen Y, Partanen J (2014) Multitool and multi-axis computer numerically con-trolled accumulation for fabricating conformal features on curved surfaces. J Manuf Sci Eng 136(3):031007–031019CrossRefGoogle Scholar
  12. 12.
    Marsh G (2011) Automating aerospace composites production with fiber placement. Reinf Plast 55(3):32–37CrossRefGoogle Scholar
  13. 13.
    Wu R, Peng H, Marschner S (2016) Printing arbitrary meshes with a 5DOF wireframe printer. ACM Trans Graph 35(4):101–115Google Scholar
  14. 14.
    Huang Y, Zhang J, Hu X, Song G, Liu Z, Yu L, Liu L (2016) FrameFab: robotic fabrication of frame shapes. ACM Trans Graph 35(6):1–11Google Scholar
  15. 15.
  16. 16.
  17. 17.
    Luo L, Baran I, Rusinkiewicz S, Matusik W (2012) Chopper: Partitioning Models into 3D-Printable Parts. ACM Trans Graph 31(6):234–246Google Scholar
  18. 18.
    Herholz P, Matusik W, Alexa M (2015) Approximating Free-form Geometry with Height Fields for Manufacturing. Comput Graph Forum 34(2):239–251CrossRefGoogle Scholar
  19. 19.
    Hu R, Li H, Hao Z, Cohen D (2014) Approximate pyramidal shape decomposition. ACM Trans Graph 33(6):1–12Google Scholar
  20. 20.
    Gao W, Zhang Y, Nazzetta DC, Ramani K, Cipra RJ (2015) RevoMaker: Enabling multi-directional and functionally-embedded 3D printing using a rotational cuboidal platform. Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. New York: ACM 2015, pp 437-446Google Scholar
  21. 21.
    Wu C, Dai C, Fang G, Liu Y, Wang CL (2017) RoboFDM: A robotic system for support-free fabrication using FDM. IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE2017, pp 1175-1180Google Scholar
  22. 22.
    Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph 22(3):954–1007CrossRefGoogle Scholar
  23. 23.
    Katz S, Leifman G, Tal A (2005) Mesh segmentation using feature point and core extraction. Vis Comput 21(8-10):649–658CrossRefGoogle Scholar
  24. 24.
    Ji Z, Liu L, Chen Z, Chen Z, Wang G (2006) Easy Mesh Cutting. Comput Graph Forum 32(3):283–291CrossRefGoogle Scholar
  25. 25.
    Liu R, Zhang H (2007) Mesh Segmentation via Spectral Embedding and Contour Analysis. Comput Graph Forum 26(3):385–394MathSciNetCrossRefGoogle Scholar
  26. 26.
    Golovinskiy A, Funkhouser TA (2008) Randomized cuts for 3D mesh analysis. ACM Trans Graph 27(5):1–12CrossRefGoogle Scholar
  27. 27.
    Chen X, Golovinskiy A, Funkhouser T (2009) A benchmark for 3D mesh segmentation. ACM Trans Graph 28(3):73–85CrossRefGoogle Scholar
  28. 28.
    Kaick OV, Fish N, Kleiman Y, Asafi S, Cohen D (2014) Shape Segmentation by Approximate Convexity Analysis. ACM Trans Graph 34(1):1–11CrossRefGoogle Scholar
  29. 29.
    Hao J, Fang L, Williams RE (2011) An efficient curvature-based partitioning of large-scale STL models. Rapid Prototyp J 17(2):116–127CrossRefGoogle Scholar
  30. 30.
    Attene M (2015) Shapes in a box: Disassembling 3D objects for efficient packing and fabrication. Comput Graph Forum 34(8):64–76CrossRefGoogle Scholar
  31. 31.
    Yao M, Chen Z, Luo L, Wang R, Wang H (2015) Level-set-based partitioning and packing optimization of a printable model. ACM Trans Graph 34(6):1–11CrossRefGoogle Scholar
  32. 32.
    Vanek J, Galicia JAG, Benes B, Měch R, Carr N, Stava O, Miller GS (2015) PackMerger: A 3D Print Volume Optimizer. Comput Graph Forum 33(6):322–332CrossRefGoogle Scholar
  33. 33.
    Ding Y, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44(1):67–76CrossRefGoogle Scholar
  34. 34.
    Wang X, Zhang H, Wang G, Wu L (2008) Multi-axis Path Planning for Hybrid Plasma Deposition and Milling Based on Slicing Characteristics. International Conference on Intelligent Robotics and Applications: Intelligent Robotics and Applications. China: Wuhan, pp 225-234
  35. 35.
    Ding D, Pan Z, Cuiuri D, Li H, Larkin N, Duin S (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing 37(2):139-150Google Scholar
  36. 36.
    Oleg I, Gershon E, Dan H, Ron W, Kim M (2005) Precise Global Collision Detection in Multi-Axis NC-Machining. Comput Aided Des 37(9):909–920CrossRefGoogle Scholar
  37. 37.
    Yu J, Wang C (2013) Method for discriminating geometric feasibility in assembly planning based on extended and turning interference matrix. Int J Adv Manuf Technol 67(8):1867–1882CrossRefGoogle Scholar
  38. 38.
    Kim YJ, Elber G, Bartoň M, Pottmann H (2015) Precise gouging-free tool orientations for 5-axis CNC machining. Comput Aided Des 58(2):220–229CrossRefGoogle Scholar
  39. 39.
    Wang N, Tang K (2007) Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Comput Aided Des 39(10):841–852CrossRefGoogle Scholar
  40. 40.
    Pan C, Smith S, Smith G (2005) Determining interference between parts in CAD STEP files for automatic assembly planning. J Comput Inf Sci Eng 5(1):56–62CrossRefGoogle Scholar
  41. 41.
    Gao S, Zhao W, Lin H, Yang F, Chen X (2010) Feature suppression based CAD mesh model simplification. Comput Aided Des 42(12):1178–1188CrossRefGoogle Scholar
  42. 42.
    Shi J, Liu J, Ning R, Hou W (2013) A collisions evaluation method in virtual environment for collaborative assembly. J Netw Comput Appl 36(6):1523–1530CrossRefGoogle Scholar
  43. 43.
    Liu M, Liu YS, Ramani K (2009) Computing global visibility maps for regions on the boundaries of polyhedra using Minkowski sums. Comput Aided Des 41(9):668–680CrossRefGoogle Scholar
  44. 44.
    Zhang X, Chan KC, Wang CL, Wong KC (2015). Computing stable contact interface for customized surgical JIGS. IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, pp 6160-6166Google Scholar
  45. 45.
    Chakraborty D, Reddy BA, Choudhury AR (2008) Extruder path generation for curved layer fused deposition modeling. Comput Aided Des 40(2):235–243CrossRefGoogle Scholar
  46. 46.
    Allen RJA, Trask RS (2015) An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot. Addit Manuf 8(1):78–87CrossRefGoogle Scholar
  47. 47.
    Ezair B, Fuhrmann S, Elber G (2018) Volumetric covering print-paths for additive manufacturing of 3D models. Comput Aided Des 100(1):1–13MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lee Y, Lee S, Shamir A, Cohen D, Seidel HP (2004). Intelligent mesh scissoring using 3D snakes. Proceedings of 12th Pacific Conference on Computer Graphics and Applications Los Angeles: IEEE. 279-287Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations