Thermo-electrical coupling simulation of powder mixed EDM SiC/Al functionally graded materials

  • L. TangEmail author
  • Y. Ji
  • L. Ren
  • K. G. Zhai
  • T. Q. Huang
  • Q. M. Fan
  • J. J. Zhang
  • J. Liu


In order to solve the problem of low efficiency and poor surface quality, the method of powder mixed electrical discharge machining (PMEDM) was proposed for machining SiC/Al functionally graded materials (FGM). The thermo-electrical coupling simulation model was established. Based on the results of single-pulse discharge simulation, PMEDM material removal mechanism was researched. At the same time, the continuous multi-pulse EDM discharge dynamic simulation was studied. The position and the size of discharge crater and material removal rate (MRR) researched were discussed. Using PMEDM SiC/Al FGM, the crater depth is shallower and the radius is larger than traditional EDM. Under the condition of 5-wt% SiC/Al FGM, peak current 14 A, powder concentration 4 g/L, pulse width 175 μs, and pulse interval 75 μs, the maximum MRR error between simulation and experiment is 5.81%, and the minimum error is 4.13%. Compared with the traditional EDM, the efficiency of PMEDM is improved by 16.34%, and the surface roughness is reduced by 29.42%.


Power mixed EDM Thermo-electrical coupling simulation Continuous multi-pulse discharge Material removal rate Surface roughness 


Funding information

This work was financially supported by Shanxi Provincial Education Department service local special plan project (Grant No. 17JF010) and the Open Research Fund Program of Shaanxi Key Laboratory of Non-Traditional Machining (Grant No. 2019SZSj-61-5).


  1. 1.
    Liu H, Wang Z, Wang Y (2016) Self-induced electrical discharge machining of Ni-Al2O3, functionally graded materials. Int J Adv Manuf Technol 83(1-4):587–594CrossRefGoogle Scholar
  2. 2.
    Hu FQ, Cao FY, Song BY (2013) Surface properties of SiCp/Al composite by powder-mixed EDM. Procedia CIRP 6:101–106CrossRefGoogle Scholar
  3. 3.
    Chmielewski M, Pietrzak K (2016) Metal-ceramic functionally graded materials-manufacturing, characterization, application. Bull Polish Acad Sci Tech Sci 64(1):151–160Google Scholar
  4. 4.
    Tang L, Guo YF (2013) Influence of discharge energy parameters on S-03 High-strength steel for aerospace components. Mater Manuf Process 29(1):53–58CrossRefGoogle Scholar
  5. 5.
    Mohanty S, Mishra A, Nanda BK (2017) Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp, using response surface methodology and particle swarm optimization. Alexandria Engineering Journal 2(6):1–11Google Scholar
  6. 6.
    Tang L, Ren L, Zhu QL (2018) EDM multi-pulse temperature field simulation of SiC/Al functionally graded materials. Int J Adv Manuf Technol 97(5-8):2501–2508CrossRefGoogle Scholar
  7. 7.
    Talla G, Gangopadhyay S, Biswas CK (2014) Multi response optimization of powder mixed electric discharge machining of aluminum/alumina metal matrix composite using grey relation analysis. Procedia Mater Sci 5:1633–1639CrossRefGoogle Scholar
  8. 8.
    Kang XM, Liang W, Zhao WS, Xu HH (2018) Feeding with perturbations in the EDM process of an integral shrouded blisk. Int J Adv Manuf Technol 96(9-12):3951–3957CrossRefGoogle Scholar
  9. 9.
    Hourmand M, Farahany S, Sarhan AAD (2015) Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int J Adv Manuf Technol 77(5-8):831–838CrossRefGoogle Scholar
  10. 10.
    Tang L, Du YT (2014) Multi-objective optimization of green electrical discharge machining Ti-6Al-4V in tap water via Grey-Taguchi method. Mater Manuf Process 29(5):507–513CrossRefGoogle Scholar
  11. 11.
    Pandey AB, Brahmankar PK (2016) A method to predict possibility of arcing in EDM of TiB 2 p reinforced ferrous matrix composite. Int J Adv Manuf Technol 86(9):1–13Google Scholar
  12. 12.
    Li H, Vilar RM, Wang Y (1997) Laser beam processing of a SiC particulate reinforced 6061 aluminium metal matrix composite. J Mater Sci 32(20):5545–5550CrossRefGoogle Scholar
  13. 13.
    Hu C, Baker TN (1997) A new aluminium silicon carbide formed in laser processing. J Mater Sci 32(19):5047–5051CrossRefGoogle Scholar
  14. 14.
    Pramanik A (2014) Developments in the non-traditional machining of particle reinforced metal matrix composites. Int J Mach Tools Manuf 86(11):44–61CrossRefGoogle Scholar
  15. 15.
    Ryota T, Akira O, Ryoji K (2016) Improvement in surface characteristics by EDM with chromium powder mixed fluid. Procedia Cirp 42:231–235CrossRefGoogle Scholar
  16. 16.
    Dhakar K, Dvivedi A (2017) Experimental investigation on near-dry EDM using glycerin-air mixture as dielectric medium. Mater Today Proc 4(4):5344–5350CrossRefGoogle Scholar
  17. 17.
    Sushil M, Vinod K, Harmesh K (2015) Experimental investigation and optimization of process parameters of Al/SiC MMCs finished by abrasive flow machining. Mater Manuf Process 30(7):902–911CrossRefGoogle Scholar
  18. 18.
    Kansal HK (2006) An experimental study of the machining parameters in powder mixed electric discharge machining of Al-10%SiCP, metal matrix composites. Int J Mach Mach Mater 1(4):396–411Google Scholar
  19. 19.
    Vishwakarma UK, Dvivedi A, Kumar P (2013) Finite element modeling of material removal rate in powder mixed electric discharge machining of Al-SiC metal matrix composites. Mater Process Fundam 2:151–158Google Scholar
  20. 20.
    Tang L, Guo YF (2013) Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. Int J Adv Manuf Technol 70(5-8):1369–1376CrossRefGoogle Scholar
  21. 21.
    Flano O, Zhao YH, Kunieda M (2017) Approaches for improvement of EDM cutting performance of SiC with foil electrode. Precis Eng 49:33–40CrossRefGoogle Scholar
  22. 22.
    Garg RK, Singh KK, Sachdeva A (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50(5-8):611–624CrossRefGoogle Scholar
  23. 23.
    Jatti VS, Bagane S (2017) Thermo-electric modelling, simulation and experimental validation of powder mixed electric discharge machining (PMEDM) of BeCu alloys. Alex Eng J 19(6):213–226Google Scholar
  24. 24.
    Abdullah A, Shabgard MR (2008) Effect of ultrasonic vibration of tool on electrical discharge machining of cemented-tungestan carbide (WC-Co). Int J Adv Manuf Technol 38:1137–1147CrossRefGoogle Scholar
  25. 25.
    Singh S (2012) Optimization of abrasive powder mixed EDM of aluminum matrix composites with multiple responses using gray relational analysis. J Mater Eng Perform 21(4):481–491CrossRefGoogle Scholar
  26. 26.
    Assarzadeh G (2013) A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters. Int J Adv Manuf Technol 64(9-12):1459–1477CrossRefGoogle Scholar
  27. 27.
    Bhattacharya A (2012) Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM. Int J Adv Manuf Technol 61(5-8):537–548CrossRefGoogle Scholar
  28. 28.
    Senthil P, Vinodh S, Singh AK (2014) Parametric optimisation of EDM on Al-Cu/TiB2 in-situ metal matrix composites using TOPSIS method. Int J Mach Mach Mater 16(1):80–94Google Scholar
  29. 29.
    Talla G, Sahoo DK, Gangopadhyay S (2015) Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. Eng Sci & Technol Int J 18(3):369–373CrossRefGoogle Scholar
  30. 30.
    Sidhu SS, Batish A, Kumar S (2014) ED Machining of particulate reinforced MMC’s. Int J Ind Manuf Eng 8(3):503–509Google Scholar
  31. 31.
    Teimouri R, Baseri H (2013) Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int J Adv Manuf Technol 67(5-8):1371–1384CrossRefGoogle Scholar
  32. 32.
    Kurniawan R, Kumaran ST, Prabu VA (2017) Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement 110:98–115CrossRefGoogle Scholar
  33. 33.
    Marafona J, Chousal JAG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602CrossRefGoogle Scholar
  34. 34.
    Shabgard M, Ahmadi R, Seyedzavvar M (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tools Manuf 65(23):79–87CrossRefGoogle Scholar
  35. 35.
    Weingärtner E, Kuster F, Wegener K (2012) Modeling and simulation of electrical discharge machining. Procedia Cirp 2(7):74–78CrossRefGoogle Scholar
  36. 36.
    Fan C (2013) Analysis of fracture behavior of metal/ceramic functionally graded materials under thermal stress. Adv Mater Res 750-752:2200–2205CrossRefGoogle Scholar
  37. 37.
    Burlayenko VN, Altenbach H, Sadowski T (2017) Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl Math Model 45:422–438MathSciNetCrossRefGoogle Scholar
  38. 38.
    Hayakawa S, Kojima H, Kunieda M, Nishiwaki N (1996) Influence of plasma extinction on machining stability in EDM process. J Jpn Soc Precis Eng 62(5):686–690CrossRefGoogle Scholar
  39. 39.
    Xia H, Hashimoto H, Kunieda M (1996) Measurement of energy distribution in continuous EDM process. Journal of the Japan Society for Precision Engineering 62(8):1141–1145CrossRefGoogle Scholar
  40. 40.
    Eubank PT, Patel MR, Barrufet MA (1993) Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J Appl Phys 73(11):7900–7909CrossRefGoogle Scholar
  41. 41.
    Ikai T, Hashigushi K (1995) Heat input for crater formation in EDM, Proceedings of International Symposium for Electro Machining-ISEMXI. EPFL, Lausanne, Switzerland 12(1):163-170Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • L. Tang
    • 1
    Email author
  • Y. Ji
    • 1
  • L. Ren
    • 1
  • K. G. Zhai
    • 1
  • T. Q. Huang
    • 2
  • Q. M. Fan
    • 1
  • J. J. Zhang
    • 1
  • J. Liu
    • 1
  1. 1.School of Mechatronics EngineeringXi’an Technological UniversityXi’anPeople’s Republic of China
  2. 2.Xi’an Kunlun Industry (Group) Co., LtdXi’anPeople’s Republic of China

Personalised recommendations