A new way to predict the mechanical properties of friction stir spot welding for Al-Cu joints by energy analysis of the vibration signals

  • Mercedes Pérez de la Parte
  • Juan Carlos Azofra
  • Hipólito Domingo Carvajal Fals
  • Angel Sánchez Roca
  • Mario César Sánchez OrozcoEmail author
  • Emilio Jiménez Macías


A new proposal for evaluating the relationship between the energy of vibration signals produced by a friction stir spot welding process and mechanical properties of dissimilar AA1050 H24 aluminum alloy–Cu lap joints is presented here. We characterized the vibration signals during the FSSW process to correlate them with microhardness and the failure load of the joints. The influences of dwell time and tool rotation speed on the mechanical properties of the join and its correlation with the energy of the vibration signals were studied. Macro images and microhardness maps of welds were also produced. The strong correlation found confirms that the energy of the vibration signals on the Z and Y axes can be used as an indicator of mechanical properties and as a novel method for weld evaluation. Finally, results based on numerical predictions are compared with the experimental failure load. The mathematical model obtained to calculate failure load values based on friction stir spot welding process parameters, also including the energy of vibration signals, improves the fit from 74.3% (with analyzed process parameters only) to 93.8% with the addition of the energy of the signal.


Friction stir spot welding Vibration signals Mechanical properties Dissimilar weld Signal processing 



This work was partially supported by the project of the Spanish Government, DPI2011-25007. “Friction stir welding of dissimilar materials. Characterization by acoustic emission techniques and artificial intelligence.”


  1. 1.
    Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32:4461–4470. CrossRefGoogle Scholar
  2. 2.
    Lathabai S, Painter MJ, Cantin GMD, Tyagi VK (2006) Friction spot joining of an extruded Al–Mg–Si alloy. Scr Mater 55:899–902. CrossRefGoogle Scholar
  3. 3.
    Merzoug M, Mazari M, Berrahal L, Imad A (2010) Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Mater Des 31:3023–3028. CrossRefGoogle Scholar
  4. 4.
    Heideman R, Johnson C, Kou S (2010) Metallurgical analysis of Al/Cu friction stir spot welding. Sci Technol Weld Join 15:597–604. CrossRefGoogle Scholar
  5. 5.
    Khan MI, Kuntz ML, Su P, Gerlich A, North T, Zhou Y (2007) Resistance and friction stir spot welding of DP600: a comparative study. Sci Technol Weld Join 12(2):175–182. CrossRefGoogle Scholar
  6. 6.
    Cox CD, Gibson BT, Strauss AM, Cook JE (2014) Energy input during friction stir spot welding. J Man Proc 16(4):479–484. CrossRefGoogle Scholar
  7. 7.
    Chen C, Kovacevic R, Jandgric D (2003) Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. Int J Mach Tools Manuf 43:1383–1390. CrossRefGoogle Scholar
  8. 8.
    Macías EJ, Roca AS, Fals HC, Fernández JB, de la Parte MP (2010) Time–frequency diagram applied to stability analysis in gas metal arc welding based on acoustic emission. Sci Technol Weld Join 15:226–232. CrossRefGoogle Scholar
  9. 9.
    Fernández JB, Roca AS, Fals HC, Macías EJ, de la Parte MP (2012) Application of vibroacoustic signals to evaluate tools profile changes in friction stir welding on AA 1050 H24 alloy. Sci Technol Weld Join 17:501–510. CrossRefGoogle Scholar
  10. 10.
    Macías EJ, Roca AS, Fals HC, Fernández JB, Muro JCS (2013) Neural networks and acoustic emission for modelling and characterization of the friction stir welding process. Rev Iberoam Autom Inform Ind 10:434–440. CrossRefGoogle Scholar
  11. 11.
    Macías EJ, Roca AS, Fals HC, Muro JCS, Fernández JB (2015) Characterisation of friction stir spot welding process based on envelope analysis of vibro-acoustical signals. Sci Technol Weld Join 20:172–180. CrossRefGoogle Scholar
  12. 12.
    Bozzi S, Helbert-Etter A, Baudin T, Criqui B, Kerbiguet J (2010) Intermetallic compounds in Al 6016/If-steel friction stir spot welds. Mater Sci Eng A 527:4505–4509. CrossRefGoogle Scholar
  13. 13.
    Bozzi S, Helbert-Etter A, Baudin T, Klosek V, Kerbiguet J, Criqui B (2010) Influence of FSSW parameters on fracture mechanisms of 5182 aluminium welds. J Mater Process Tech 210(11):1429–1435. CrossRefGoogle Scholar
  14. 14.
    Xue P, Xiao BL, Wang D, Ma ZY (2011) Achieving high property friction stir welded aluminium/copper lap joint at low heat input. Sci Technol Weld Join 16:657–661. CrossRefGoogle Scholar
  15. 15.
    Barekatain H, Kazeminezhad M, Kokabi A (2014) Microstructure and mechanical properties in dissimilar butt friction stir welding of severely plastic deformed aluminum AA 1050 and commercially pure copper sheets. J Mater Sci Technol 30(8):826–834. CrossRefGoogle Scholar
  16. 16.
    Smith CB (2007) Robots and machines for friction stir welding/processing. In: Mishra RS, Mahoney MW (eds) Friction stir welding and processing. ASM International, Materials Park, pp 219–233Google Scholar
  17. 17.
    Yin YH, Sun N, North TH, Hu SS (2010) Hook formation and mechanical properties in AZ31 friction stir spot welds. J Mat Proc Tech 210:2062–2070. CrossRefGoogle Scholar
  18. 18.
    Raju KR, Varma BM, Kumar NR (2013) Condition based maintenance (CBM) through vibration spectrum analysis for improving the reliability of B-1 conveyor (DIVE542) diagnosis of fault through vibration spectrum analysis technique. Int J Innov Tech Expl Eng 2(2):58–62Google Scholar
  19. 19.
    Luo Y, Li JL, Wu W (2013) Nugget quality prediction of resistance spot welding on aluminium alloy based on structureborne acoustic emission signals. Sci Technol Weld Join 18(4):301–306. CrossRefGoogle Scholar
  20. 20.
    Ouyang J, Yarrapareddy E, Kovacevic R (2006) Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J Mat Proc Tech 172(1):110–122. CrossRefGoogle Scholar
  21. 21.
    Murr LE, Li Y, Flores RD, Trillo EA, McClure JC (1998) Intercalation vortices and related microstructural features in the friction-stir welding of dissimilar metals. Mater Res Innov 2(3):150–163. CrossRefGoogle Scholar
  22. 22.
    Wang DA, Lee SC (2007) Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. J Mat Proc Technol 186:291–297. CrossRefGoogle Scholar
  23. 23.
    Yuan W, Mishra RS, Webb S, Chen YL, Carlson B, Herling DR, Grant GJ (2011) Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J Mat Proc Technol 211:972–977. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Mercedes Pérez de la Parte
    • 1
  • Juan Carlos Azofra
    • 2
  • Hipólito Domingo Carvajal Fals
    • 3
  • Angel Sánchez Roca
    • 3
  • Mario César Sánchez Orozco
    • 3
    Email author
  • Emilio Jiménez Macías
    • 2
  1. 1.Mechanical Engineering DepartmentLa Rioja UniversityLogroñoSpain
  2. 2.Electrical Engineering DepartmentLa Rioja UniversityLogroñoSpain
  3. 3.Manufacturing and Materials Department, School of Mechanical EngineeringUniversity of Oriente - UOSantiago de CubaCuba

Personalised recommendations