Advertisement

Stability prediction in milling based on linear multistep method

  • Yonggang Mei
  • Rong Mo
  • Huibin Sun
  • Bingbing He
  • Neng Wan
ORIGINAL ARTICLE
  • 78 Downloads

Abstract

On the basis of linear multistep method, the stability of milling process is investigated in this paper. The dynamics of milling process considering the regeneration effect is modeled as a delay differential equation (DDE) with periodic coefficient. The Floquet theory is adopted to predict the stability of milling by calculating the spectral radius of the transition matrix over one principal period. Two high-order starting methods for the Milne-Simpson method are introduced firstly. The effects of different starting methods on the convergence rate of the algorithm are studied. Subsequently, a Milne-Simpson-based predictor-corrector method (SSM) is proposed to further improve the numerical stability and convergence rate. The accuracy and computational efficiency of SSM are verified through two benchmark milling models. The simulation results demonstrate that the proposed method has excellent numerical stability and higher convergence rate compared with the Simpson-based method (SBM) and Adams-Simpson-based method (ASM).

Keywords

Stability prediction Linear multistep method Milne-Simpson Starting method Predictor-corrector 

Notes

Funding information

This research received financial support from the National Natural Science Foundation of China (NSFC, nos.: 51875475 and 51775445).

References

  1. 1.
    Arnold R (1946) Cutting tools research: report of subcommittee on carbide tools: the mechanism of tool vibration in the cutting of steel. Proc Inst Mech Eng 154(1):261–284CrossRefGoogle Scholar
  2. 2.
    Andrew C, Tobias S (1961) A critical comparison of two current theories of machine tool chatter. International Journal of Machine Tool Design and Research 1(4):325–335CrossRefGoogle Scholar
  3. 3.
    Hanna N, Tobias S (1974) A theory of nonlinear regenerative chatter. ASME J Eng Ind 96(1):247–255CrossRefGoogle Scholar
  4. 4.
    Minis I, Yanushevsky R, Tembo A, Hocken R (1990) Analysis of linear and nonlinear chatter in milling. CIRP Ann Manuf Technol 39(1):459–462CrossRefGoogle Scholar
  5. 5.
    Wiercigroch M (1781) Krivtsov AM (2001) Frictional chatter in orthogonal metal cutting. Philos Trans R Soc Lond 359:713–738CrossRefGoogle Scholar
  6. 6.
    Rusinek R, Wiercigroch M, Wahi P (2014) Modelling of frictional chatter in metal cutting. Int J Mech Sci 89:167–176CrossRefGoogle Scholar
  7. 7.
    Delio T, Tlusty J, Smith S (1992) Use of audio signals for chatter detection and control. ASME J Eng Ind 114(2):146–157Google Scholar
  8. 8.
    Tansel I, Li M, Demetgul M, Bickraj K, Kaya B, Ozcelik B (2012) Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR). Int J Adv Manuf Technol 58(1):109–118CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Li H, Meng G, Tu X, Cheng C (2016) Chatter detection in milling process based on the energy entropy of VMD and WPD. Int J Mach Tools Manuf 108:106–112CrossRefGoogle Scholar
  10. 10.
    Cao H, Yue Y, Chen X, Zhang X (2017) Chatter detection in milling process based on synchrosqueezing transform of sound signals. Int J Adv Manuf Technol 89(9-12):2747–2755CrossRefGoogle Scholar
  11. 11.
    Cao H, Zhou K, Chen X, Zhang X (2017) Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. Int J Adv Manuf Technol 92(9-12):4387–4397CrossRefGoogle Scholar
  12. 12.
    Mei Y, Mo R, Sun H, Bu K (2018) Chatter detection in milling based on singular spectrum analysis. Int J Adv Manuf Technol 95(9-12):3475–3486CrossRefGoogle Scholar
  13. 13.
    Mei C (2005) Active regenerative chatter suppression during boring manufacturing process. Robot Comput Integr Manuf 21(2):153–158CrossRefGoogle Scholar
  14. 14.
    Sims ND (2007) Vibration absorbers for chatter suppression: a new analytical tuning methodology. J Sound Vib 301(3):592–607CrossRefGoogle Scholar
  15. 15.
    Kakinuma Y, Enomoto K, Hirano T, Ohnishi K (2014) Active chatter suppression in turning by band-limited force control. CIRP Ann Manuf Technol 63(1):365–368CrossRefGoogle Scholar
  16. 16.
    Meng H-F, Kang Y, Chen Z, Zhao Y-B, Liu G-P (2015) Stability analysis and stabilization of a class of cutting systems with chatter suppression. IEEE/ASME Trans Mechatron 20(2):991–996CrossRefGoogle Scholar
  17. 17.
    Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Brecher C, Stepan G (2016) Chatter suppression techniques in metal cutting. CIRP Ann Manuf Technol 65(2):785–808CrossRefGoogle Scholar
  18. 18.
    Wang C, Zhang X, Yan R, Chen X, Cao H (2019) Multi harmonic spindle speed variation for milling chatter suppression and parameters optimization. Precis Eng 55:268–274CrossRefGoogle Scholar
  19. 19.
    Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362CrossRefGoogle Scholar
  20. 20.
    Merdol S, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng 126(3):459–466CrossRefGoogle Scholar
  21. 21.
    Bayly P, Halley J, Mann BP, Davies M (2003) Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci Eng 125(2):220–225CrossRefGoogle Scholar
  22. 22.
    Butcher EA, Ma H, Bueler E, Averina V, Szabo Z (2004) Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int J Numer Methods Eng 59(7):895–922MathSciNetCrossRefGoogle Scholar
  23. 23.
    Butcher EA, Bobrenkov OA, Bueler E, Nindujarla P (2009) Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels. J Comput Nonlinear Dyn 4(3):031003CrossRefGoogle Scholar
  24. 24.
    Insperger T, Stépán G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Eng 55(5):503–518MathSciNetCrossRefGoogle Scholar
  25. 25.
    Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61(1):117–141MathSciNetCrossRefGoogle Scholar
  26. 26.
    Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1-2):334–341CrossRefGoogle Scholar
  27. 27.
    Long X-H, Balachandran B (2007) Stability analysis for milling process. Nonlinear Dyn 49(3):349–359CrossRefGoogle Scholar
  28. 28.
    Long X, Balachandran B (2010) Stability of up-milling and down-milling operations with variable spindle speed. J Vib Control 16(7-8):1151–1168MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ding H, Ding Y, Zhu L (2012) On time-domain methods for milling stability analysis. Chin Sci Bull 57(33):4336–4345CrossRefGoogle Scholar
  30. 30.
    Ding Y, Zhu L, Zhang X, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509CrossRefGoogle Scholar
  31. 31.
    Ding Y, Zhu L, Zhang X, Ding H (2011) Numerical integration method for prediction of milling stability. J Manuf Sci Eng 133(3):031005CrossRefGoogle Scholar
  32. 32.
    Niu J, Ding Y, Zhu L, Ding H (2014) Runge–Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn 76(1):289–304MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang Z, Li H, Meng G, Liu C (2015) A novel approach for the prediction of the milling stability based on the Simpson method. Int J Mach Tools Manuf 99:43–47CrossRefGoogle Scholar
  34. 34.
    Qin C, Tao J, Li L, Liu C (2017) An Adams-Moulton-based method for stability prediction of milling processes. Int J Adv Manuf Technol 89(9-12):3049–3058CrossRefGoogle Scholar
  35. 35.
    Qin C, Tao J, Liu C (2017) Stability analysis for milling operations using an Adams-Simpson-based method. Int J Adv Manuf Technol 92(1-4):969–979CrossRefGoogle Scholar
  36. 36.
    Butcher JC (2008) Numerical methods for ordinary differential equations., 2nd Edition. John Wiley & Sons, ChichesterGoogle Scholar
  37. 37.
    Delves LM, Mohamed J (1985) Computational methods for integral equations. Cambridge University Press, CambridgeGoogle Scholar
  38. 38.
    Ozoegwu C (2016) Comment on “A novel approach for the prediction of the milling stability based on the Simpson method” by Z. Zhang, H. Li, G. Meng, C. Liu,[Int. J. Mach. Tools Manuf. 99 (2015) 43–47]. Int J Mach Tools Manuf (103):53–56Google Scholar
  39. 39.
    Balachandran B (2001) Nonlinear dynamics of milling processes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 359(1781):793–819CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Yonggang Mei
    • 1
  • Rong Mo
    • 1
  • Huibin Sun
    • 1
  • Bingbing He
    • 2
  • Neng Wan
    • 1
  1. 1.Department of Mechanical EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.College of Mechanical & Electrical EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China

Personalised recommendations