Optimizing speed of a run-out table of the hot strip mill

  • Sergey Ivanovich Luk’yanovEmail author
  • Nikolay Vladimirovich Shvidchenko
  • Sergey Sergeevich Krasilnikov
  • Roman Sergeevich Pishnograev
  • Dmitriy Vladimirovich Shvidchenko
  • Maksim Vladimirovich Konovalov


Existing method of run-out table drive control on the hot strip mill ensures the required strip tension by setting a difference between speeds of the delivered strip and roller bodies. Such difference results in a higher wear rate of roller bodies and their more frequent replacement, entailing high expenses. Thus, a currently important objective is to increase efficiency of run-out table drives on hot strip mills. The paper describes a method to calculate required torque of an electric drive of run-out table rollers in a variety of strip delivery modes, using results of experiments carried out on mill 2000 at public company “Magnitogorsk Iron and Steel Works” (MMK). We adjusted mandatory process requirements for a run-out table roller drive with regard to a decreased wear rate of roller bodies and the improved strip surface quality. The authors developed a method to control a drive of run-out table rollers, ensuring compliance with new process requirements. Efficiency of the offered technical solutions was under an experimental evaluation.


Hot strip mill Run-out table drive control Wear of roller bodies Strip surface quality 



  1. 1.
    Davilbekov NK, Klementev VA, Kurpanov GG et al (2003) Increasing durability of run-out table rollers on sheet mills. Steel (10):44–47Google Scholar
  2. 2.
    Polyakov BA, Varshavsky EA, Karetny ZP et al (1987) Experience with increasing efficiency of the run-out table on the continuous hot strip mill. Steel (9):64–67Google Scholar
  3. 3.
    Alimbetov A, Kaliyev Y, Zhauyt A, Yestemessova G, Yussupova S, Nurbakyt M (2018) Calculation of the stress-strain state of the deflector rollers. Vibroengineering Procedia 18:183–188CrossRefGoogle Scholar
  4. 4.
    Takashima Takayuki, Sakai Toshio, Minami Yoshikazu. Method for controlling speed of roller table of rolling mill. Pat. JP10318485(A). B21B37/00; B21B37/46; B21B39/12Google Scholar
  5. 5.
    Kubota Yoshi. Control method for roller table driving of rolling mill. Pat. JPH091219 (A). B21B39/12Google Scholar
  6. 6.
    Antonov VM, Abiev AG, Kavygin VV et al Method of regulating the speed of rotation of rolls in broad-strip hot-rolling mill delivery table. USSR Author’s Certificate 1045763, IPC B21B 37/00Google Scholar
  7. 7.
    Wu Y (2016) Designing of hot strip rolling mill control system. World J Eng Technol 04(4):413–417CrossRefGoogle Scholar
  8. 8.
    Lukyanov SI, Titov AV Shvidchenko NV et al. Patent RF, No. 2373006. Control method of velocity mode of outgoing roller table of wide-strip rolling millGoogle Scholar
  9. 9.
    Lukyanov SI, Pishnograev RS, Shvidchenko NV et al (2005) A diagnosis system of a run-out roller table drive on hot rolling mill 2000. Vestnik of Nosov Magnitogorsk State Technical University 4(12):51–53Google Scholar
  10. 10.
    Klyuchev VI (2001) Theory of electric drives: the textbook for universities. Energoatomizdat, Moscow, p 704Google Scholar
  11. 11.
    Polyakov BA, Zubkov Yu S, Varshavsky EA, Volodin VV (1986) Pulling force of a run-out roller table of the hot strip mill. Izvestiya. Ferrous Metallurgy (10):64–67Google Scholar
  12. 12.
    Lukyanov SI, Shvidchenko NV, Pishnograev RS (2012) Run-out roller table drive control system on the hot strip mill. Vestnik of Ivanovo State Power Engineering University (6):95–99Google Scholar
  13. 13.
    Tatsuro Honda, Shigemasa Nakagawa, Hisayoshi Tachibana, Chihiro Uematsu, Yasuhiko Buei, Koichi Sakagami (2016) Temperature measurement technology in water cooling process and high accuracy cooling control technology for high tensile hot rolled strip. Nippon Steel & Sumitomo Metal Technical Report No. 111Google Scholar
  14. 14.
    Diez D, Barr C, Cetinkaya-Rundel M, Dorazio L (2015) Advanced high school statistic, 1st edn. OpenIntro, IncGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Sergey Ivanovich Luk’yanov
    • 1
    Email author
  • Nikolay Vladimirovich Shvidchenko
    • 1
  • Sergey Sergeevich Krasilnikov
    • 1
  • Roman Sergeevich Pishnograev
    • 1
  • Dmitriy Vladimirovich Shvidchenko
    • 1
  • Maksim Vladimirovich Konovalov
    • 1
  1. 1.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations