A quality-driven assembly sequence planning and line configuration selection for non-ideal compliant structures assemblies

  • Vahid Jandaghi Shahi
  • Abolfazl MasoumiEmail author
  • Pasquale Franciosa
  • Dariusz Ceglarek


In automotive body assembly systems, an optimum assembly sequence planning (ASP) not only increases production efficiency and product quality, but also decreases cost and process cycle time. Typically, ASP evaluation approaches are focused on design for assembly criteria, and very few studies have considered the impact of ASP on dimensional accuracy. The major challenges involving quality-driven ASP evaluation can be enumerated into three categories: (1) batch of compliant non-ideal parts to consider real part defects; (2) variation propagation modeling in multi-station assembly (MSA) system in the presence of stochastic manufacturing errors both at product and process levels; and, (3) the development of dimensional quality criteria for quantitative ASP comparisons. This paper proposes a methodology based on the modeling of dimensional errors propagation in MSA with a batch of compliant non-ideal parts to improve product dimensional quality through optimizing ASP and assembly line configuration. It entails three main steps: (i) assembly sequence generation by k-ary assembly operation method for a predetermined assembly line configuration; (ii) variation propagation simulation taking into account a batch of non-ideal parts, station-to-station repositioning errors, and spring-back phenomenon in MSA system; and, (iii) robust optimization of ASP based on developed quality criteria which contains two quantitative indices. The potential benefits of the proposed methodology are successfully demonstrated on automotive front-rail assembly process.


Assembly line configuration Assembly sequence planning Batch of compliant non-ideal parts Dimensional quality Multi-station assembly 



Set of ordered parts


ki-piece mixed graph


Set of unordered parts


Transfer function

\(\mathbf {f}_{{k}_{i}}\)

Part deviation generator function


KPC tolerance interval [LSL,USL]


Station index


Stochastic sample of KCCs


Assembled part(s) at station ith


Kernel smoothing function


Proportionality constant


Taguchi’s loss function


KPC index


Mixed graph


ASP index


Number of ASP options


Number of KPCs


Number of Monte-Carlo iterations


Number of stations

ΔP (i)

Non-ideal part

Qj (i,r)

Displacement field for FE simulations


FE simulation index

S (i)

Assembly station input


KPC target vector

U (i)

State vector of displacement field


Set of total parts


Stochastic KPC variation

Xj (i)

State vector for KPC variation


ASP option


Conformity rate


Target index


Quality criteria


Standard deviation


Mean value


KPCs variation vector


Deviation operator

FLP (i)

Fixture location point

JLP (i)

Joining location point


Probability density function


Variation response methodology



The authors wish to thank School of Mechanical Engineering at University of Tehran (Iran) and Digital Lifecycle Management group at University of Warwick (UK) for their invaluable cooperation during this research.

Funding information

This study was partially supported by the UK EPSRC project EP/K019368/1: “Self-Resilient Reconfigurable Assembly Systems with In-process Quality Improvement.”


  1. 1.
    Sacerdoti ED (1974) Planning in a hierarchy of abstraction spaces. Artif Intell 5(2):115–135CrossRefGoogle Scholar
  2. 2.
    Wang L, Keshavarzmanesh S, Feng HY, Buchal RO (2009) Assembly process planning and its future in collaborative manufacturing: a review. Int J Adv Manuf Technol 41(1–2):132–144CrossRefGoogle Scholar
  3. 3.
    Ceglarek D, Shi J (1995) Dimensional variation reduction for automotive body assembly. Manuf Rev 8:2Google Scholar
  4. 4.
    Shiu B, Ceglarek D, Shi J (1996) Multi-stations sheet metal assembly modeling and diagnostics. In: Transactions North-American manufacturing research institution of SME, pp 199–204Google Scholar
  5. 5.
    Chen SF, Liu YJ (2001) An adaptive genetic assembly-sequence planner. Int J Comput Integr Manuf 14 (5):489–500CrossRefGoogle Scholar
  6. 6.
    Bourjault A (1984) Contribution à une approche méthodologique de l’assemblage automatisé: élaboration automatique des séquences opératoires. Université de Franche-Comté, Thése d’EtatGoogle Scholar
  7. 7.
    De Fazio T, Whitney D (1987) Simplified generation of all mechanical assembly sequences. IEEE J Robot Autom 3(6):640–658CrossRefGoogle Scholar
  8. 8.
    De Mello LH, Sanderson AC (1990) And/or graph representation of assembly plans. IEEE Trans Robot Autom 6(2):188–199CrossRefGoogle Scholar
  9. 9.
    De Mello LH, Sanderson AC (1991) Representations of mechanical assembly sequences. IEEE Trans Robot Autom 7(2):211–227CrossRefGoogle Scholar
  10. 10.
    Mantripragada R, Whitney D (1998) The datum flow chain: a systematic approach to assembly design and modeling. Res Eng Des 10(3):150–165CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Ni J, Lin Z, Lai X (2002) Automated sequencing and sub-assembly detection in automobile body assembly planning. J Mater Process Technol 129(1–3):490–494CrossRefGoogle Scholar
  12. 12.
    Xing Y, Chen G, Lai X, Jin S, Zhou J (2007) Assembly sequence planning of automobile body components based on liaison graph. Assem Autom 27(2):157–164CrossRefGoogle Scholar
  13. 13.
    Wang H, Ceglarek D (2012) Representation, generation, and analysis of mechanical assembly sequences with k-ary operations. J Comput Inf Sci Eng 12(1):011001CrossRefGoogle Scholar
  14. 14.
    Jiménez P (2013) Survey on assembly sequencing: a combinatorial and geometrical perspective. J Intell Manuf 24(2):235–250CrossRefGoogle Scholar
  15. 15.
    Rashid MFF, Hutabarat W, Tiwari A (2012) A review on assembly sequence planning and assembly line balancing optimisation using soft computing approaches. Int J Adv Manuf Technol 59(1–4):335–349CrossRefGoogle Scholar
  16. 16.
    Wang H, Ceglarek D (2005) Quality-driven sequence planning and line configuration selection for compliant structure assemblies. CIRP Annals-Manuf Technol 54(1):31–35CrossRefGoogle Scholar
  17. 17.
    Wang H, Ceglarek D (2009) Variation propagation modeling and analysis at preliminary design phase of multi-station assembly systems. Assem Autom 29(2):154–166CrossRefGoogle Scholar
  18. 18.
    Rong Q, Shi J, Ceglarek D (2001) Adjusted least squares approach for diagnosis of compliant assemblies in the presence of ill-conditioned problems. J Manuf Sci E T ASME 123(3):453–461CrossRefGoogle Scholar
  19. 19.
    Chen G, Zhou J, Cai W, Lai X, Lin Z, Menassa R (2006) A framework for an automotive body assembly process design system. Comput Aided Des 38(5):531–539CrossRefGoogle Scholar
  20. 20.
    Hu SJ, Stecke KE (2009) Analysis of automotive body assembly system configurations for quality and productivity. Int J Manuf Res 4(3):281–305CrossRefGoogle Scholar
  21. 21.
    Liu SC, Hu SJ (1997) Variation simulation for deformable sheet metal assemblies using finite element methods. J Manuf Sci Eng 119(3):368–374CrossRefGoogle Scholar
  22. 22.
    Lai XM, Xing YF, Sun J, Chen GL (2009) Optimisation of assembly sequences for compliant body assemblies. Int J Prod Res 47(21):6129–6143CrossRefGoogle Scholar
  23. 23.
    Xing Y, Wang Y (2012) Assembly sequence planning based on a hybrid particle swarm optimisation and genetic algorithm. Int J Prod Res 50(24):7303–7312CrossRefGoogle Scholar
  24. 24.
    Mounaud M, Thiebaut F, Bourdet P, Falgarone H, Chevassus N (2011) Assembly sequence influence on geometric deviations propagation of compliant parts. Int J Prod Res 49(4):1021–1043CrossRefGoogle Scholar
  25. 25.
    Franciosa P, Gerbino S, Patalano S (2013) A computer-aided tool to quickly analyse variabilities in flexible assemblies in different design scenarios. Int J Product Develop 18(2):112–133CrossRefGoogle Scholar
  26. 26.
    Ni J, Tang WC, Pan M, Qiu X, Xing Y (2017) Assembly sequence optimization for minimizing the riveting path and overall dimensional error. Proc Instit Mech Eng, Part B: J Eng Manuf, 1–11Google Scholar
  27. 27.
    Ghandi S, Masehian E (2015) Assembly sequence planning of rigid and flexible parts. J Manuf Syst 36:128–146CrossRefGoogle Scholar
  28. 28.
    Masoumi A, Jandaghi Shahi V (2018) Fixture layout optimization in multi-station sheet metal assembly considering assembly sequence and datum scheme. In: The International journal of advanced manufacturing technology, pp 1–15CrossRefGoogle Scholar
  29. 29.
    Shi J (2006) Stream of variation modeling and analysis for multistage manufacturing processes. CRC Press/Taylor & FrancisGoogle Scholar
  30. 30.
    Ding Y, Ceglarek D, Shi J, et al (2000) Modeling and diagnosis of multistage manufacturing processes: part I: state space model. In: Proceedings of the 2000 Japan/USA symposium on flexible automation, pp 23–26Google Scholar
  31. 31.
    Camelio J, Hu SJ, Ceglarek D (2003) Modeling variation propagation of multi-station assembly systems with compliant parts. J Mech Des 125(4):673–681CrossRefGoogle Scholar
  32. 32.
    Chang M, Gossard DC (1997) Modeling the assembly of compliant, non-ideal parts. Comput-aided Des 29 (10):701–708CrossRefGoogle Scholar
  33. 33.
    Ceglarek D, Shi J, Wu S (1994) A knowledge-based diagnostic approach for the launch of the auto-body assembly process. J Eng Industry 116(4):491–499CrossRefGoogle Scholar
  34. 34.
    Babu MK, Franciosa P, Ceglarek D (2019) Adaptive spatio-temporal sampling for effective measurement coverage during quality inspection of free-form surfaces using robotic 3D optical scanner. J Manuf SystGoogle Scholar
  35. 35.
    Franciosa P, Gerbino S, Patalano S (2011) Simulation of variational compliant assemblies with shape errors based on morphing mesh approach. Int J Adv Manuf Technol 53(1–4):47–61CrossRefGoogle Scholar
  36. 36.
    Franciosa P (2009) Modeling and simulation of variational rigid and compliant assembly for tolerance analysis. PhD thesis, Università, degli Studi di Napoli Federico IIGoogle Scholar
  37. 37.
  38. 38.
    Franciosa P, Ceglarek D (2015) Hierarchical synthesis of multi-level design parameters in assembly system. CIRP Ann 64(1):149–152CrossRefGoogle Scholar
  39. 39.
    Franciosa P, Kovács A, Erdős G, Ceglarek D, Váncza J (2020) Fixture design synthesis for assembly system with compliant non-ideal sheet metal parts using stochastic fixture capability approach. Robot Comput Integr ManufGoogle Scholar
  40. 40.
    Franciosa P, Palit A, Gerbino S, Ceglarek D (2019) A novel hybrid shell element formulation (QUAD + and TRIA + ): a benchmarking and comparative study. Finite Elem Anal Des 166:103319. MathSciNetCrossRefGoogle Scholar
  41. 41.
    Taguchi G, Chowdhury S, Wu Y, et al (2005) Taguchi’s quality engineering handbook, vol 1736. Wiley, HobokenzbMATHGoogle Scholar
  42. 42.
    Graves SC, Redfield CH (1988) Equipment selection and task assignment for multiproduct assembly system design. Int J Flex Manuf Syst 1(1):31–50CrossRefGoogle Scholar
  43. 43.
    Franciosa P, Gerbino S, Ceglarek D (2016) Fixture capability optimisation for early-stage design of assembly system with compliant parts using nested polynomial chaos expansion. Procedia CIRP 41:87–92CrossRefGoogle Scholar
  44. 44.
    Silverman BW (2018) Density estimation for statistics and data analysis. RoutledgeGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Vahid Jandaghi Shahi
    • 1
  • Abolfazl Masoumi
    • 1
    Email author
  • Pasquale Franciosa
    • 2
  • Dariusz Ceglarek
    • 2
  1. 1.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Digital Lifecycle Management (DLM), WMGUniversity of WarwickCoventryUK

Personalised recommendations