Research on digital production technology for traditional manufacturing enterprises based on industrial Internet of Things in 5G era

  • Yi LiuEmail author
  • KaiDi Tong
  • Feng Mao
  • Jie Yang


Based on the analysis of 5G and Internet of Things technology, this paper proposes the reference architecture of smart factory and its application path for traditional manufacturing enterprises in China, in which the intelligent manufacturing workshop is the core component of smart factory. The Internet of Things technology combined the advanced technologies (Industrial Big Data, WSN, RFID, Cloud Computing Platform) and provides hardware network foundation and technical theory for designing the real-time tracking and monitoring system of intelligent workshop products. The developed system has the advantages of low cost, rapid deployment, and convenient expansion, which traditional manufacturing enterprises realize intelligent management based on IoT application platform.


5G Industry 4.0 Internet of Things Product tracking Smart factory Workshop monitoring 


Funding information

This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY18G020009, LQ17D010005) and the National Natural Science Foundation of China (Grant Nos. 71831006, 71804038).


  1. 1.
    Machado CG, Winroth M, Carlsson D, Almström P, Centerholt V, Hallin M (2019) Industry 4.0 readiness in manufacturing companies: challenges and enablers towards increased digitalization. Procedia CIRP 81:1113–1118CrossRefGoogle Scholar
  2. 2.
    Chen B, Wan J, Lei S, Peng L, Mukherjee M, Yin B (2018) Smart factory of industry 4.0: key technologies, application case, and challenges. IEEE Access 6(99):6505–6519CrossRefGoogle Scholar
  3. 3.
    Geissbauer R, Vedso J, Stefan S. (2016) Industry 4.0: building the digital enterprise. PwC NL, 2016 Global Industry SurveyGoogle Scholar
  4. 4.
    Chien CF, Hong TY, Guo HZ (2017) An empirical study for smart production for TFT-LCD to empower industry 3.5. J Chin Inst Eng 40(7):552–561CrossRefGoogle Scholar
  5. 5.
    Tehrani M, Uysal M, Yanikomeroglu H (2014) Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun Mag 52(5):86–92CrossRefGoogle Scholar
  6. 6.
    Palattella M, Dohler M, Grieco A, Rizzo G, Torsner J, Engel T, Ladid L (2016) Internet of things in the 5G era: enablers, architecture and business models. IEEE J Sel Areas Commun 34(3):510–527CrossRefGoogle Scholar
  7. 7.
    Westerman G, Tannou M, Bonnet D, Ferraris P, McAfee A. (2012) The digital advantage: how digital leaders outperform their peers in every industry. MIT Center for Digital Business and Capgemini ConsultingGoogle Scholar
  8. 8.
    Shellshear E, Berlin R, Carlson JS (2015) Maximizing smart factory systems by incrementally updating point clouds. IEEE Compute Graph Appl 35(2):62–69CrossRefGoogle Scholar
  9. 9.
    Bandyopadhyay D, Sen J (2011) Internet of things: applications and challenges in technology and standardization. Wirel Pers Commun 58(1):49–69CrossRefGoogle Scholar
  10. 10.
    Duan Q, Zeng J, Chakrabarty K, Dispoto G (2015) Real-time production scheduler for digital-print-service providers based on a dynamic incremental evolutionary algorithm. IEEE Trans Autom Sci Eng 12(2):701–715CrossRefGoogle Scholar
  11. 11.
    Wang XW (2014) Big data drives manufacturing towards intelligence. Internet Things Technol 12:7–8Google Scholar
  12. 12.
    Dayal U, Gupta C, Vennelakanti R et al (2014) An approach to benchmarking industrial big data applications. WBDB2014, August. Springer International Publishing, Potsdam, pp 45–60Google Scholar
  13. 13.
    Koustabh D, Kanti DS (2017) Comparison of edge computing implementations: fog computing, cloudlet and mobile edge computing. IEEE 2017 Global Internet of Things Summit (GIoTS), Geneva, pp 1–6Google Scholar
  14. 14.
    Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. Proceedings of the first edition of the MCC workshop on Mobile cloud computing. ACM 13–16Google Scholar
  15. 15.
    Condoluci M, Dohler M, Araniti G, Molinaro A, Zheng K (2015) Toward 5G dense nets: architectural advances for effective machine-type communications over femtocells. IEEE Commun Mag 53(1):134–141CrossRefGoogle Scholar
  16. 16.
    Jung K, Choi SS, Kulvatunyou B, Cho H, Morris KC (2017) A reference activity model for smart factory design and improvement. Prod Plan Control 28(2):108–122CrossRefGoogle Scholar
  17. 17.
    Agiwal M, Saxena N, Roy A (2019) Towards connected living: 5G enabled Internet of Things (IoT). IETE Tech Rev 36(2):190–202CrossRefGoogle Scholar
  18. 18.
    Wang F-Y (2013) The destiny: towards knowledge automation-preface of the special issue for the 50th anniversary of Acta Automatica Sinica. Acta Automat Sin 39(11):1741–1743CrossRefGoogle Scholar
  19. 19.
    Chen G, Wang C, Liang Z, Arinez J, Xiao G (2016) Transient performance analysis of serial production lines with geometric machines. IEEE Trans Autom Control 61(4):877–891MathSciNetCrossRefGoogle Scholar
  20. 20.
    Silva GCD, Kaminski PC (2015) Application of digital factory concepts to optimise and integrate inventories in automotive pre-assembly areas. Int J Comput Integr Manuf 28(6):607–615CrossRefGoogle Scholar
  21. 21.
    Bonomi F (2011) Connected vehicles, the internet of things, and fog computing. In The eighth ACM international workshop on vehicular inter-networking (VANET), Las Vegas, USA, pp. 13–15Google Scholar
  22. 22.
    Choi SS, Bo HK, Sang DN (2015) A diagnosis and evaluation method for strategic planning and systematic design of a virtual factory in smart manufacturing systems. Int J Precis Eng Manuf 16(6):1107–1115CrossRefGoogle Scholar
  23. 23.
    Weyer S, Meyer T, Ohmer M, Gorecky D, Zühlke D (2016) Future modeling and simulation of cps-based factories: an example from the automotive industry. IFAC Papers Online 49(31):97–102CrossRefGoogle Scholar
  24. 24.
    Liu Y, Feng M, Li Y (2019) Data analysis with python: principal and practice. Tsinghua University Press. ISBN: 9787302515791Google Scholar
  25. 25.
    Sun Y, Lin F, Xu H (2018) Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II. Wirel Pers Commun 102(2):1369–1385CrossRefGoogle Scholar
  26. 26.
    Datta SK, Bonnet C, Haerri J (2015) Fog computing architecture to enable consumer centric internet of things services. 2015 International Symposium on Consumer Electronics (ISCE), 1–6Google Scholar
  27. 27.
    Lyu X, Ni W, Tian H, Liu RP, Wang X, Giannakis GB, Paulraj A (2017) Optimal scheduling of mobile edge computing for internet of things using partial information. IEEE J Sel Areas Commun 35(11):2606–2615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Management SchoolHangzhou Dianzi UniversityHangzhouChina
  2. 2.The Research Center of Information Technology & Economic and Social DevelopmentHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations