Advertisement

Estimation of scallop height in freeform surface CNC Machining

  • Aman Kukreja
  • S. S. PandeEmail author
ORIGINAL ARTICLE
  • 110 Downloads

Abstract

Scallop height is primarily used to assess the quality of complex freeform surface parts manufactured on multi-axis computer numerical control (CNC) machines. Currently, the inspection methods used in practice are slow and expensive as they need sophisticated equipment and skilled personnel. No simulation technique seems to exist to estimate the part quality a priori. This paper reports the development of a software system to estimate the scallop heights for freeform surface machining from the CNC part programs. Two approaches have been proposed. The first one processes the CAD model of the machined component obtained from the simulation software while the second approach directly processes the CNC toolpath to generate scallop points on the surface. The scallop points generated from both approaches are analyzed to estimate scallop heights at various regions on the surface using numerical curve fitting techniques. The developed system was extensively tested for different surface types, toolpath strategies and the results from the machining trials. The system was found to be robust and accurate to estimate the part quality a priori.

Keywords

CNC-machining simulation Freeform surface Surface topography analysis Scallop height estimation 

Notes

References

  1. 1.
    Elbert G, Cohen E (1994) Tool path generation for freeform surface models. CAD Comput Aided Des 26:490–496.  https://doi.org/10.4485/9410610490-07 CrossRefGoogle Scholar
  2. 2.
    Feng HY, Huiwen L (2002) Constant scallop-height tool path generation for three-axis sculptured surface machining. CAD Comput Aided Des 34:647–654.  https://doi.org/10.1016/S0010-4485(01)00136-1 CrossRefGoogle Scholar
  3. 3.
    Ding S, Mannan MA, Poo AN, et al (2003) Adaptive iso-planar tool path generation for machining of free-form surfaces. CAD Comput Aided Des 35:141–153. doi:  https://doi.org/10.1016/S0010-4485(02)00048-9 CrossRefGoogle Scholar
  4. 4.
    Zhang P, Liu Z (2016) Modeling and prediction for 3D surface topography in finish turning with conventional and wiper inserts. Measurement 94:37–45.  https://doi.org/10.1016/j.measurement.2016.07.080 CrossRefGoogle Scholar
  5. 5.
    Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. CAD Comput Aided Des 36:1395–1417.  https://doi.org/10.1016/j.cad.2004.02.009 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benardos PGG, Vosniakos G-CC, Fountas NA et al (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43:833–844.  https://doi.org/10.1016/S0890-6955(03)00059-2 CrossRefGoogle Scholar
  7. 7.
    Kim BH, Chu CN (1999) Texture prediction of milled surfaces using texture superposition method. CAD Comput Aided Des 31:485–494.  https://doi.org/10.1016/S0010-4485(99)00045-7 CrossRefzbMATHGoogle Scholar
  8. 8.
    Ralph IPWL, Loftus M (1992) Cusp geometry analysis in free-form surface machining. Int J Prod Res 30:2697–2711.  https://doi.org/10.1080/00207549208948185 CrossRefGoogle Scholar
  9. 9.
    Ehmann KF, Hong MS (1994) A generalized model of the surface generation process in metal cutting. CIRP Ann - Manuf Technol 43:483–486.  https://doi.org/10.1016/S0007-8506(07)62258-6 CrossRefGoogle Scholar
  10. 10.
    Lu C (2008) Study on prediction of surface quality in machining process. J Mater Process Technol 205:439–450.  https://doi.org/10.1016/j.jmatprotec.2007.11.270 CrossRefGoogle Scholar
  11. 11.
    Zain AM, Haron H, Sharif S (2010) Prediction of surface roughness in the end milling machining using Artificial Neural Network. Expert Syst Appl 37:1755–1768.  https://doi.org/10.1016/j.eswa.2009.07.033 CrossRefGoogle Scholar
  12. 12.
    Arizmendi M, Fernández J, de Lacalle LNL et al (2008) Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. Experimental validation. CIRP Ann - Manuf Technol 57:101–104.  https://doi.org/10.1016/j.cirp.2008.03.045 CrossRefGoogle Scholar
  13. 13.
    Quinsat Y, Sabourin L, Lartigue C (2007) Surface topography in ball end milling process: description of a 3D surface roughness parameter. J Mater Process Technol 5:135–143. doi:  https://doi.org/10.1016/j.jmatprotec.2007.04.129 CrossRefGoogle Scholar
  14. 14.
    Quinsat Y, Lavernhe S, Lartigue C (2011) Characterization of 3D surface topography in 5-axis milling. Wear 271:590–595. doi:  https://doi.org/10.1016/j.wear.2010.05.014 CrossRefGoogle Scholar
  15. 15.
    Zhang C, Guo S, Zhang H, Zhou L (2013) Modeling and predicting for surface topography considering tool wear in milling process. Int J Adv Manuf Technol 2849–2860. doi:  https://doi.org/10.1007/s00170-013-4989-7 CrossRefGoogle Scholar
  16. 16.
    Zhang C, Zhang H, Li Y, Zhou L (2015) Modeling and on-line simulation of surface topography considering tool wear in multi-axis milling process. Int J Adv Manuf Technol 77:735–749.  https://doi.org/10.1007/s00170-014-6485-0 CrossRefGoogle Scholar
  17. 17.
    Hendriko H (2017) Mathematical model for calculating scallop height of toroidal cutter in five-axis milling. ARPN J Eng Appl Sci 12:5642–5646Google Scholar
  18. 18.
    Xu J, Zhang H, Sun Y (2017) Swept surface-based approach to simulating surface topography in ball-end CNC milling. Int J Adv Manuf Technol 98:1–12.  https://doi.org/10.1007/s00170-017-0322-1 CrossRefGoogle Scholar
  19. 19.
    Layegh KSE, Lazoglu I (2017) 3D surface topography analysis in 5-axis ball-end milling. CIRP Ann - Manuf Technol 66:133–136.  https://doi.org/10.1016/j.cirp.2017.04.021 CrossRefGoogle Scholar
  20. 20.
    Bhandari S (2018) STL slice and create path. https://in.mathworks.com/matlabcentral/fileexchange/62113-slice_stl_create_path-triangles-slice_height. Accessed 10 June 2019
  21. 21.
    Mathworks (2019) Curve fitting toolbox user’s guide R 2019 a. https://www.mathworks.com/help/pdf_doc/curvefit/curvefit.pdf. Accessed 10 June 2019
  22. 22.
    Dhanda M, Pande SS (2019) Adaptive tool path planning strategy for freeform surface machining using point cloud. Comput Aided Des Appl 16:289–307.  https://doi.org/10.14733/cadaps.2019.289-307 CrossRefGoogle Scholar
  23. 23.
    Mane H, Pande SS (2019) Adaptive tool path planning strategy for 5-axis CNC machining of free form surfaces. In: Proceedings of the 14th International ASME Manufacturing Science and Engineering (MSEC) Conference. Erie, PA, USA, June 10-14, 2019, MSEC2019–2737.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentIndian Institute of Technology (IIT) BombayMumbaiIndia

Personalised recommendations