Advertisement

Predictive approach of high-cycle fatigue limit of finished turned AISI 316L steel

  • R. GrissaEmail author
  • F. Zemzemi
  • S. Manchoul
  • R. Seddik
  • R. Fathallah
ORIGINAL ARTICLE
  • 37 Downloads

Abstract

This paper presents a global approach in order to predict the high-cycle fatigue (HCF) limit of turned parts. The multi-axial fatigue criteria of both Crossland and Dang Van are adapted for the case of machined parts. Thereby, the machined surface conditions which are residual stresses, superficial damage, and hardening, are taken into account in the both criteria. The suggested approach is conducted for turned AISI 316L stainless steel for various machining parameters. Otherwise, three types of cyclic loading, which are traction, torsion, and combined traction-torsion loadings, are applied onto the machined surface so as to investigate their effects on the HCF performance. The applicability of the used fatigue criteria and their efficiency in the prediction of the HCF indicator are discussed. A critical assessment of the beneficial or unbeneficial effects of each surface condition on the fatigue strength is investigated. The obtained results are physically consistent and are in good concordance with the available experimental investigations.

Keywords

High-cycle fatigue performance Fatigue criteria Residual stresses Machining conditions Cyclic loading Surface conditions 

Nomenclature

Ds

superficial damage after machining

σVM

new yield strength after machining

\( {\sigma}_{y_0} \)

initial yield strength of the material

σRSxx

residual stresses in the circumferential directions

σRSzz

residual stresses in the axial directions

\( {\underset{\_}{\underset{\_}{\sigma}}}_{RS}(y) \)

residual stress tensor

\( {\sigma}_{\mathrm{eqDV}}^M \)

equivalent stress of the Dang Van criterion for the machined material

\( {\sigma}_{\mathrm{eqCr}}^M \)

equivalent stress of the Crossland criterion for the machined material

\( \underset{\_}{\underset{\_}{\sigma }}\left(y,t\right) \)

total cyclic loading tensor at an instant t and for y depth

\( {\underset{\_}{\underset{\_}{\sigma}}}_{\mathrm{app}}\left(y,t\right) \)

applied cyclic loading tensor at an instant t and for y depth

αD, βD

material parameters defining the Dang Van criterion

αC, βC

material parameters defining the Crossland criterion

σD

fatigue limit in tensile loadings before machining (MPa)

τD

fatigue limit in torsion loadings before machining (MPa)

σMD

fatigue limit in tensile loadings after machining (MPa)

τMD

fatigue limit in torsion loadings after machining (MPa)

σa

amplitude of the tensile stress (MPa)

τa

amplitude of the torsion stress (MPa)

σm

average stress in tensile loadings (MPa)

τm

average stress in torsion loadings (MPa)

Rσ

load ratio

σmax

maximal tensile stress (MPa)

σmin

minimal tensile stress (MPa)

\( {\hat{\tau}}^{\mathrm{a}} \)

Tresca shear stress (MPa)

J2, a

amplitude of the second invariant

\( {I}_{\mathrm{Cr}}^M\;\left(\%\right) \)

HCF indicator of the Crossland criterion

\( {I}_{\mathrm{DV}}^{\mathrm{M}}\;\left(\%\right) \)

HCF indicator of the Dang Van criterion

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gunnberg F, Escursell M, Jacobson M (2006) The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel. J Mater Process Technol 174:82–90CrossRefGoogle Scholar
  2. 2.
    Fathallah R, Sidhom H, Braham C, Castex L (2003) Effect of surface properties on high cycle fatigue behaviour of shot peened ductile steel. Mater Sci Technol 19:1050–1056CrossRefGoogle Scholar
  3. 3.
    Javidi A, Rueger U, Eichlseder W (2008) The effect of machining on the surface integrity and fatigue life. Int J Fatigue 30:2050–2055CrossRefGoogle Scholar
  4. 4.
    Moussaoui K (2013) Influence de l’usinage sur la durée de vie en fatigue de pièces aéronautiques en alliage de titane. Thèse de l’Université de Toulouse.Google Scholar
  5. 5.
    Sunday JO, Ifeoluwa JO, Nnaemeka O (2014) Machining variables influence on the fatigue life of end-milled aluminium alloy. Int J Mater Sci Appl 3:391Google Scholar
  6. 6.
    Wiesner C, Kiinzi H, Ilschner B (1991) Characterization of the topography of turned surfaces and its influence on the fatigue life of A1-7075. Mater Sci Eng 145:151–158CrossRefGoogle Scholar
  7. 7.
    Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Arola D, Williams C (2002) Estimating the fatigue stress concentration factor of machined surfaces. Int J Fatigue 24(9):923–930CrossRefGoogle Scholar
  9. 9.
    Suraratchai M, Limido J, Mabru C, Chieragatti R (2008) Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. Int J Fatigue 30:2119–2126CrossRefGoogle Scholar
  10. 10.
    Kyrre S, Skallerud B, Wathne B (2008) Surface roughness characterization for fatigue life predictions using finite element analysis. Int J Fatigue 30:2200–2209CrossRefGoogle Scholar
  11. 11.
    Souto-Lebel A (2010) Rôle de l’intégrité de surface dans la tenue en fatigue d’un acier bainitique après fraisage de finition. Thèse de l’école normale supérieure de CachanGoogle Scholar
  12. 12.
    Chomienne V, Lefebvre F (2015) Etude de l’influence de l’intégrité de surface en tournage de l’acier 15-5PH sur la tenue en fatigue en flexion rotative. Thèse à INSA de LyonGoogle Scholar
  13. 13.
    Umbrello D, M’Saoubi R, Outeiro JC (2007) The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tool Manu 47:462–470CrossRefGoogle Scholar
  14. 14.
    Lu J (2004) Fatigue des alliages ferreux – Facteurs d’influence. Techniques de l’ingénieur, BM 5043Google Scholar
  15. 15.
    Guillemot N (2011) Prise en compte de l’intégrité de surface pour la prévision de la tenue en fatigue de piéces usinées en fraisage. Thèse à l’école normale superieure de CachanGoogle Scholar
  16. 16.
    Fathallah R, Laamouri A, Sidhom H, Braham C (2004) High cycle fatigue behavior prediction of shot-peened parts. Int J Fatigue 26:1053–1067CrossRefGoogle Scholar
  17. 17.
    Seddik R, Ben Sghaier R, Fathallah R (2016) A numerical–analytical approach to predict the effects of shot peening on the fatigue performance of the nickel-based super alloy Waspaloy. Proc IMechE L J Mater Des Appl:1–13Google Scholar
  18. 18.
    Manchoul S, Seddik R, Grissa R, Ben Sghaier R, Fathallah R (2017) A predictive approach to investigate the effect of ultrasonic shot peening on a high-cycle fatigue performance of an AISI 316L target. Int J Adv Manuf Technol 95:3437–3345CrossRefGoogle Scholar
  19. 19.
    Grissa R, Zemzemi F, Seddik R, Fathallah R (2017) A numerical–analytical approach to predict high cycle fatigue performance of finish machined AISI 316L steel. Int J Adv Manuf Technol 94:2003–2015CrossRefGoogle Scholar
  20. 20.
    Crossland B (1970) The effect of pressure on the fatigue of metals. Mechanical Behaviour of Materials Under Pressure, pp 299–355Google Scholar
  21. 21.
    Dang Van K, Douaron A, Lieurade HP (1984) Multiaxial fatigue limit: a new approach. Advances in Fracture Research, 6th Int. Conf. Fracture, pp 1879–1885Google Scholar
  22. 22.
    Sidhom N, Laamouri A, Fathallah R, Braham C, Lieurade HP (2005) Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach. Int J Fatigue 27:729–745CrossRefGoogle Scholar
  23. 23.
    Deperrois A (1991)Sur le calcul des limites d’endurance des aciers. Thèse de doctorat, Ecole Polytechnique, Palaiseau, p 259Google Scholar
  24. 24.
    Tounsi N, Vicenti J, Otho A, Elbestawi MA (2002) From the basic mechanisms of orthogonal metal cutting toward the identification of the constitutive equation. Int J Mach Tools Manuf 42:1373–1383CrossRefGoogle Scholar
  25. 25.
    Laamouri A, Sidhom H, Braham C (2013) Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316L stainless steel ground surfaces: experimental and numerical approaches. Int J Fatigue 48:109–121CrossRefGoogle Scholar
  26. 26.
    Geng GS, Xu JH (2008) Surface integrity and fatigue property of a high speed milled titanium alloy. Adv Mater Res 54:305–310CrossRefGoogle Scholar
  27. 27.
    Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. Int Mach Tool Manuf 45:131–136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • R. Grissa
    • 1
    • 2
    Email author
  • F. Zemzemi
    • 3
  • S. Manchoul
    • 1
    • 2
  • R. Seddik
    • 1
    • 2
  • R. Fathallah
    • 1
    • 2
  1. 1.Unité de Génie de Production Mécanique et Matériaux (UGPM2-UR17ES43), National Engineering School of SfaxUniversity of SfaxSfaxTunisia
  2. 2.National Engineering School of SousseUniversity of SousseSousseTunisia
  3. 3.Laboratory of Mechanics of Sousse, National Engineering School of SousseUniversity of SousseSousseTunisia

Personalised recommendations