Advertisement

Observer design for nonlinear interconnected systems: experimental tests for self-sensing control of synchronous machine

  • M. A. HamidaEmail author
  • J. De Leon-Morales
  • A. Messali
ORIGINAL ARTICLE
  • 47 Downloads

Abstract

A nonlinear observer for a class of nonlinear interconnected systems is introduced. The proposed methodology facilitates the observer design for nonlinear systems. Sufficient conditions criteria are derived to ensure asymptotical convergence of the proposed observer. The convergence of the proposed observer is studied in both nominal and abnormal cases. The designed observer is applied for self-sensing control of interior permanent magnet synchronous machine (IPMSM) to estimate the rotor position, the rotor speed, the stator resistance, and the load torque. Performance of the proposed observer algorithm is evaluated through real-time experiments using an industrial benchmark. Two cases are employed to prove the performance capability of the proposed self-sensing control algorithm. The first case measures the performance under normal operating condition. The influence of parameter deviations on the proposed self-sensing control algorithm is discussed to prove the robustness of the proposed observer in the second case. The accuracy of the proposed self-sensing control algorithm is greater than 93 %.

Keywords

Observer Nonlinear systems Interior permanent magnet synchronous motor (IPMSM) Experimental validation 

Notes

Acknowledgments

Authors would like to thank Dr. R. El-Sehiemy for his help to improve the current paper.

References

  1. 1.
    Wu Y, Shen T (2015) An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst Control Lett 82:108–114. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167691115000857 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hammouri H, Targui B, Armanet F (2002) High gain observer based on a triangular structure. Int J Robust Nonlinear Control: IFAC-Affiliated J 12(6):497–518MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bernard P (2019) Observer design for nonlinear systems. SpringerGoogle Scholar
  4. 4.
    Ailon A, Ortega R (1993) An observer-based set-point controller for robot manipulators with flexible joints. Syst Control Lett 21(4):329–335. [Online]. Available: http://www.sciencedirect.com/science/article/pii/016769119390076I MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davila J, Fridman L, Levant A (2005) Second-order sliding-mode observer for mechanical systems. IEEE Trans Autom Control 50(11):1785–1789MathSciNetCrossRefGoogle Scholar
  6. 6.
    Besancon G, De Leon J, Huerta O (2006) On adaptive observers for state affine systems. Int J Control 79:581–591MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grip HF, Saberi A, Johansen TA (2012) Observers for interconnected nonlinear and linear systems. Automatica 48(7):1339–1346. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0005109812001665 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Keliris C, Polycarpou MM, Parisini T (2015) A robust nonlinear observer-based approach for distributed fault detection of input-output interconnected systems. Automatica 53:408–415. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0005109815000527 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Allam A, Onori S (2018) An interconnected observer for concurrent estimation of bulk and surface concentration in the cathode and anode of a lithium-ion battery. IEEE Trans Ind Electron 65(9):7311–7321CrossRefGoogle Scholar
  10. 10.
    Hamida MA, De Leon J, Glumineau A, Boisliveau R (2013) An adaptive interconnected observer for sensorless control of pm synchronous motors with online parameter identification. IEEE Trans Ind Electron 60 (2):739–748CrossRefGoogle Scholar
  11. 11.
    Ammar A, Benakcha A, Bourek A (2017) Adaptive mrac-based direct torque control with SVM for sensorless induction motor using adaptive observer. Int J Adv Manuf Technol 91(5):1631–1641. [Online]. Available:  https://doi.org/10.1007/s00170-016-9840-5 CrossRefGoogle Scholar
  12. 12.
    Akrad A, Hilairet M, Diallo D (2011) Design of a fault-tolerant controller based on observers for a PMSM drive. IEEE Trans Ind Electron 58(4):1416–1427CrossRefGoogle Scholar
  13. 13.
    Liu J, Zhu Z (2014) Improved sensorless control of permanent-magnet synchronous machine based on third-harmonic back EMF. IEEE Trans Ind Appl 50(3):1861–1870CrossRefGoogle Scholar
  14. 14.
    Naifar O, Boukettaya G, Ouali A (2015) Global stabilization of an adaptive observer-based controller design applied to induction machine. Int J Adv Manuf Technol 81(1):423–432. [Online]. Available:  https://doi.org/10.1007/s00170-015-7099-x CrossRefGoogle Scholar
  15. 15.
    Ayadi A, Hajji S, Smaoui M, Chaari A, Farza M (2017) Experimental sensorless control for electropneumatic system based on high gain observer and adaptive sliding mode control. Int J Adv Manuf Technol 93(9):4075–4088. [Online]. Available:  https://doi.org/10.1007/s00170-017-0885-x CrossRefGoogle Scholar
  16. 16.
    Morawiec M (2013) The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter. IEEE Trans Industrial Inform 9(2):1047– 1055CrossRefGoogle Scholar
  17. 17.
    Traore D, Plestan F, Glumineau A, de Leon J (2008) Sensorless induction motor: high-order sliding-mode controller and adaptive interconnected observer. IEEE Trans Indus Electron 55(11):3818–3827CrossRefGoogle Scholar
  18. 18.
    Wang G, Li Z, Zhang G, Yu Y, Xu D (2013) Quadrature PLL-based high-order sliding-mode observer for IPMSM sensorless control with online mtpa control strategy. IEEE Trans Energy Conversion 28(1):214–224CrossRefGoogle Scholar
  19. 19.
    Lu K, Lei X, Blaabjerg F (2013) Artificial inductance concept to compensate nonlinear inductance effects in the back EMF-based sensorless control method for PMSM. IEEE Trans Energy Conversion 28(3):593–600CrossRefGoogle Scholar
  20. 20.
    Wang G, Zhan H, Zhang G, Gui X, Xu D (2014) Adaptive compensation method of position estimation harmonic error for EMF-based observer in sensorless IPMSM drives. IEEE Trans Power Electron 29(6):3055–3064CrossRefGoogle Scholar
  21. 21.
    Nguyen TD, Foo G (2013) Sensorless control of a dual-airgap axial flux permanent magnet machine for flywheel energy storage system. Electric Power Appl IET 7(2):140–149CrossRefGoogle Scholar
  22. 22.
    Hamida MA, Glumineau A, de Leon J (2012) Robust integral backstepping control for sensorless IPM synchronous motor controller. J Franklin Inst 349(5):1734–1757MathSciNetCrossRefGoogle Scholar
  23. 23.
    Long L (2017) Multiple Lyapunov functions-based small-gain theorems for switched interconnected nonlinear systems. IEEE Trans Autom Control 62(8):3943–3958MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li Y, Tong S, Yang G (2019) Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system. IEEE Trans Cybern, 1–9Google Scholar
  25. 25.
    Bornard G, Couenne N, Celle F (1989) Regularly persistent observers for bilinear systems. In: Descusse J, Fliess M, Isidori A, Leborgne D (eds) New trends in nonlinear control theory. Springer, Berlin, pp 130–140Google Scholar
  26. 26.
    Torres L, Besancon G, Georges D (2012) EKF-like observer with stability for a class of nonlinear systems. IEEE Trans Autom Control 57(6):1570–1574MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang Q (2002) Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans Autom Control 47(3):525–529MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pillay P, Krishnan R (1989) Modeling, simulation, and analysis of permanent-magnet motor drives. II. The brushless DC motor drive. IEEE Trans Ind Appl 25(2):274–279CrossRefGoogle Scholar
  29. 29.
    Nguyen NA, Olaru S (2018) A family of piecewise affine control Lyapunov functions. Automatica 90:212–219. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0005109817306398 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Besancon G, Hammouri H (1998) On observer design for interconnected systems. J Math Syst Estimation Control 8:1–25MathSciNetzbMATHGoogle Scholar
  31. 31.
    Besancon G (1996) Observer synthesis for class of nonlinear control systems. Eur J Control 2:176–192CrossRefGoogle Scholar
  32. 32.
    Agarwal A, Agarwal V (2012) FPGA realization of trapezoidal PWM for generalized frequency converter. IEEE Trans Industr Inf 8(3):10CrossRefGoogle Scholar
  33. 33.
    Al Nabulsi A, Dhaouadi R (2012) Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Trans Industr Inf 8(3):12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • M. A. Hamida
    • 1
    Email author
  • J. De Leon-Morales
    • 2
  • A. Messali
    • 1
  1. 1.LS2NEcole Centrale de NantesNantes Cedex 03France
  2. 2.FIME-Universidad Autonoma de Nuevo LeonSan Nicolas de los GarzaMexico

Personalised recommendations