Fabrication and characterization of AA6061/CNTs surface nanocomposite by friction stir processing

  • Hussnain Riaz
  • Tareq MnazoorEmail author
  • Ali Raza


Aluminum matrix composites (AMCs) are among the advanced materials that are employed in numerous industrial applications. AMCs have good stiffness and strength. They have low weight that makes them valuably handy for improving fuel efficiency and economy in the structures made from them. The friction stir processing (FSP) is a novel technique which is highly advantageous for producing composites, which are reinforced with particles that are sub-micron in size particularly in light weight metal matrix composites (MMCs). Current study is done to examine the potential of AA6061-based surface nanocomposites by reinforcing it with carbon nanotubes (CNTs) (as-received and purified) employing FSP. Fabrication of the composites is carried out by filling CNTs into the grooves of different sizes and friction stir processed (FSPd). Various parameters are investigated to attain best mechanical properties and dispersion of CNTs in the matrix. Metallography is used to reveal the material flow and grain size variation in the zones formed by the FSP. Micro hardness and tensile tests are conducted to evaluate the mechanical properties and an increase of 47.3% hardness and an increase of 32.4% ultimate tensile strength (UTS) are observed from the base FSPd material. Electron microscopic techniques are also employed to reveal the microstructural details.


Aluminum matrix composites Friction stir CNTs Tensile Microstructure 



  1. 1.
    Balakrishnan M, Dinaharan I, Palanivel R, Sathiskumar R (2019) Influence of friction stir processing on microstructure and tensile behavior of AA6061/Al3Zr cast aluminum matrix composites. J Manuf Process 38:148–157CrossRefGoogle Scholar
  2. 2.
    Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) G.B. Patent Application No. 9125978.8, U KGoogle Scholar
  3. 3.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1):1–78CrossRefGoogle Scholar
  4. 4.
    Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1-2):307–310CrossRefGoogle Scholar
  5. 5.
    Ebbesen TW (1994) Carbon nanotubes. Annu Rev Mater Sci 24:235–264CrossRefGoogle Scholar
  6. 6.
    Kianezhad M, Honarbakhsh Raouf A (2019) Effect of nano-Al2O3 particles and friction stir processing on 5083 TIG welding properties. J Mater Process Technol 263:356–365CrossRefGoogle Scholar
  7. 7.
    Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  8. 8.
    Thostenson ET, Li CY, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3-4):491–516CrossRefGoogle Scholar
  9. 9.
    Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63(11):1517–1524CrossRefGoogle Scholar
  10. 10.
    Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303CrossRefGoogle Scholar
  11. 11.
    Esawi AMK, El Borady MA (2008) Carbon nanotubes-reinforced aluminum strips. Compos Sci Technol 68(2):486–492CrossRefGoogle Scholar
  12. 12.
    Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419(1-2):344–348CrossRefGoogle Scholar
  13. 13.
    Ci L, Ryu Z, Jin-Phillipp NY, Ruhle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375CrossRefGoogle Scholar
  14. 14.
    Zhang ZY, Yang R, Li Y, Chen G, Liu MP (2018) Microstructural evolution and mechanical properties of friction stir processed ZrB2/6061Al nanocomposites. J Alloys Compd 762(25):312–318CrossRefGoogle Scholar
  15. 15.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  16. 16.
    Ogata S, Shibutani Y (2003) Ideal tensile strength and band gap of single walled carbon nanotubes. Phys Rev B 68:165409CrossRefGoogle Scholar
  17. 17.
    Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, HobokenCrossRefGoogle Scholar
  18. 18.
    Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotubes reinforced metal matrix composites - a review. Int Mater Rev 55:41–64CrossRefGoogle Scholar
  19. 19.
    Deng CF, Wang DZ, Zhang XX, Li AB (2007) Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A 444(1-2):138–145CrossRefGoogle Scholar
  20. 20.
    Deng CF, Zhang X, Ma Y, Wang D (2007) Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Metals 26(5):450–455CrossRefGoogle Scholar
  21. 21.
    Deng CF, Zhang XX, Wang D, Lin Q, Li A (2007) Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett 61(8-9):1725–1728CrossRefGoogle Scholar
  22. 22.
    Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composites reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303CrossRefGoogle Scholar
  23. 23.
    Mishra RS (2003) Friction stir processing technologies. Adv Mater Process 161(10):43–46Google Scholar
  24. 24.
    Shinoda T, Murakami H, Nanbu K, Takegami H (2004) Properties of frictionally coated layer on engine bore. Weld World 48(11-12):18–25CrossRefGoogle Scholar
  25. 25.
    Mishra RS, Mahoney MW (2004) Metal superplasticity enhancement and forming process Patent No. 6712916, US.Google Scholar
  26. 26.
    Sharma SR, Ma ZY, Mishra RS (2004) Effect of friction stir processing on fatigue behavior of A356 alloy. Scr Mater 51(3):237–241CrossRefGoogle Scholar
  27. 27.
    Mishra RS (2003) Superplastic forming of micro components, Patent Specification 6,655,575, USGoogle Scholar
  28. 28.
    Berbon PB, Bingel WH, Mishra RS, Bampton CC, Mahoney MW (2001) Friction stir processing: a tool to homogenize nanocomposite aluminum alloys. Scr Mater 44(1):61–66CrossRefGoogle Scholar
  29. 29.
    Mishra RS (2005) Integral channels in metal components and fabrication thereof Patent No. 6,923,362, USGoogle Scholar
  30. 30.
    Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM International, Metals ParkGoogle Scholar
  31. 31.
    MA ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39(3):642–658CrossRefGoogle Scholar
  32. 32.
    Khaled T (2005) An outsider looks at friction stir welding Federal Aviation Administration, Report ANM-112 N-05-06-FAA-USAGoogle Scholar
  33. 33.
    Lim DK, Shibayanagib T, Gerlicha AP (2009) Synthesis of multi-walled CNTs reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A 507(1–2):194–199CrossRefGoogle Scholar
  34. 34.
    Johannes LB, Yowell L, Sosa E, Arepalli S, Mishra RS (2006) Survivability of single-walled carbon nanotubes during friction stir processing. Nanotechnology 17(12):3081–3084CrossRefGoogle Scholar
  35. 35.
    Miracle DB (2005) Metal matrix composite-from science to technological significance. Compos Sci Technol 65(15-16):2526–2540CrossRefGoogle Scholar
  36. 36.
    Shinoda T, Kawai M (2003) Surface modification by novel friction thermomechanical process of aluminum alloy castings. Surf Coat Technol 169-170:456–459CrossRefGoogle Scholar
  37. 37.
    Melgarejo ZH, Suárezb OM, Sridharanc K (2006) Wear resistance of a functionally graded aluminum matrix composite. Scr Mater 55(1):95–98CrossRefGoogle Scholar
  38. 38.
    Funatani K (2000) Emerging technology in surface modification of light metals. Surf Coat Technol 133-134:264–272CrossRefGoogle Scholar
  39. 39.
    Shorowordi KM, Laouib T, Haseeba AS, Celisb JP, Froyenb L (2003) Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composite: a comparative study. J Mater Process Technol 142(3):738–743CrossRefGoogle Scholar
  40. 40.
    Zhang J, Suna K, Wang J (2008) Sliding wear behavior of plasma sprayed Fe3Al–Al2O3 graded coatings. Thin Solid Films 516(16):5681–5685CrossRefGoogle Scholar
  41. 41.
    Zorawski W, Chatys R, Radek N (2008) Plasma-sprayed composite coatings with reduced friction coefficient. Surf Coat Technol 202(18):4578–4582CrossRefGoogle Scholar
  42. 42.
    Rosenberger MR, Schvezovb CE, Forlererc E (2005) Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear 259(1-6):590–601CrossRefGoogle Scholar
  43. 43.
    Liu ZY, Xiao BL, Wang WG, Ma ZY (2012) Singly dispersed carbon nanotube aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5):1843–1852CrossRefGoogle Scholar
  44. 44.
    Morisada Y, Fujii H, Nagaokaa T, Fukusumia M (2006) Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater Sci Eng A 433(1-2):50–54CrossRefGoogle Scholar
  45. 45.
    Misak HE (2008) The distribution and flow of nickel powder and CNTs mixed in an Al material via friction stir welding Graduating Thesis, Wichita State UniversityGoogle Scholar
  46. 46.
    Luick L (2009) FSP of SWNT to increase the thermal conductivity of aluminum. South Dakota School of Mines and Technology & NSF, South DakotaGoogle Scholar
  47. 47.
    Amin W (2012) MWCNTs/AA6061 Surface nanocomposites: development using friction stir processing and characterization FMSE, GIK Institute of Engineering Sciences and Technology Topi, KPK, PakistanGoogle Scholar
  48. 48.
    Timken Latrobe Steel Data Sheet: H13 Tool Steel (2007)
  49. 49.
    International Mold Steel, Inc. Premium H13 (2007)
  50. 50.
    ASM International, ASM metals handbook (1990) Properties and selection: nonferrous alloys and special purpose materials American Society for Metals, vol 2. ASM International, Metals ParkGoogle Scholar
  51. 51.
    Bryson B, Bryson WE (2005) Heat treatment, selection, and application of tool steels. Hanser Gardner Publications, CincinnatiCrossRefzbMATHGoogle Scholar
  52. 52.
    Thelning KE (1984) Steel and its heat treatment Butterworths, LondonGoogle Scholar
  53. 53.
    Midling OT, Oosterkamp LD, Bersaas J (1998) Friction stir welding aluminum-process and applications Joints in Aluminium – INALCO: Seventh International Conference Proceedings: (15-17 April 1998), Cambridge, UK, pp 161–169Google Scholar
  54. 54.
    Hashimoto T, Jyogan S, Nakata K, Kiu YG, Ushio M (1999) FSW joints of high strength aluminum alloy Proc 1st International Symposium on Friction Stir Welding: (15-16 June 1999), Thousand Oaks, CA, USAGoogle Scholar
  55. 55.
    Nakata K, Kim YG, Ushio M, Hashimoto T, Jyogan S (2000) Weldability of high strength aluminum alloys by friction stir welding. ISIJ Int 40(1):515–519Google Scholar
  56. 56.
    Dickerson T, Przydatek J (2000) The significance of root flaws in friction stir welds in aluminum alloys The Welding Institute, Members Report No.714/2000Google Scholar
  57. 57.
    Feng AH, Xiao BL, Ma ZY (2008) Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Compos Sci Technol 68(9):2141–2148CrossRefGoogle Scholar
  58. 58.
    Rohatgi P (1991) Cast aluminum-matrix composites for automotive applications. JOM J Miner Met Mater Soc 43(4):10–15CrossRefGoogle Scholar
  59. 59.
    Kelly A (2006) Composite materials after seventy years. J Mater Sci 41(3):905–912CrossRefGoogle Scholar
  60. 60.
    Rawal S (2001) Metal-matrix composites for space applications. JOM J Miner Met Mater Soc 53(4):14–17CrossRefGoogle Scholar
  61. 61.
    Shelly JS, LeClaire R, Nichols J (2001) Metal-matrix composites for liquid rocket engines. JOM J Miner Met Mater Soc 53(4):18–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dalian University of TechnologyDalianChina
  2. 2.COMSATS University IslamabadLahorePakistan
  3. 3.COMSATS University IslamabadSahiwalPakistan

Personalised recommendations