The influence of manganese(IV) oxide addition on the dispersion characteristics and structural integrity of MWCNTs in metal oxides

  • Senzeni Sipho LephuthingEmail author
  • Avwerosuoghene Moses Okoro
  • Oluremi Oladeji Ige
  • Peter Apata Olubambi


Recent advancement in material science and engineering has fostered the utilization of metal oxides (MOs) in diverse engineering applications. Despite the widespread application of MOs, they have certain limitations such as brittleness and low thermal conductivity. Therefore, the integration of multiwalled carbon nanotubes (MWCNTs) into their structure will augment the properties of MOs since they posses excellent mechanical, thermal and electrical properties. In order to achieve the effective transfer of the unique properties of MWCNTs into MOs, it is paramount to homogenously disperse the nanotubes within the MO matrix. Past works have emphasized that MWCNTs tend to agglomerate during their incorporation into metal matrices. In this study, the homogeneous dispersion of 1 wt% MWCNTs in metal oxides was accomplished by the introduction of manganese oxide (MnO2) of various (5, 10, 15) weight percentages in titanium oxide (TiO2). This was carried out by the adoption of regulated milling parameters: speed 100 rpm, time 6 h, and ball to powder ratio 10:1 using a high-energy ball mill. The dispersion characteristics and structural integrity of the MWCNTs in MOs were evaluated by the adoption of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD) techniques. The results indicated that MWCNTs were homogeneously dispersed in the MOs; however, better dispersion with minimal structural strain to the MWCNTs was achieved at a higher weight percent of MnO2 in the composite powder mixture.


Multiwalled carbon nanotubes Metal oxides High-energy ball milling Dispersion characteristics Structural integrity 


Funding information

This research was funded by the National Research Foundation of South Africa (Thuthuka Grant).


  1. 1.
    Zhou H, Zhang L, Zhang D, Chen S, Coxon PR, He X, Coto M, Kim HK, Xi K, Ding S (2016) A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Sci Rep 6:1–11. CrossRefGoogle Scholar
  2. 2.
    Deng C, Zhang P, Ma Y, Zhang X, Wang D (2009) Dispersion of multiwalled carbon nanotubes in aluminum powders. Rare Metals 28:175–180. CrossRefGoogle Scholar
  3. 3.
    Soldano C (2015) Hybrid metal-based carbon nanotubes: novel platform for multifunctional applications. Prog Mater Sci 69:183–212. CrossRefGoogle Scholar
  4. 4.
    Liu Y, Chae HG, Ho Choi Y, Kumar S (2014) Effect of carbon nanotubes on sintering behavior of alumina prepared by sol-gel method. Ceram Int 40:6579–6587. CrossRefGoogle Scholar
  5. 5.
    Matsui H, Saito Y, Karuppuchamy S, Yoshihara M (2009) The electronic behaviors of TiO 2 / MnO 2 / carbon clusters composite materials obtained by the calcination of a TiO ( acac ) 2 / Mn ( acac ) 3 / epoxy resin complex. Curr Appl Phys 9:1203–1209. CrossRefGoogle Scholar
  6. 6.
    Salam MA, Mohamed RM (2012) Fullerenes, nanotubes and carbon nanostructures enhancement of titanium dioxide-manganese oxide nanoparticles photocatalytic activity by doping with multi-walled carbon nanotubes, pp 37–41.
  7. 7.
    Li J, Wang N, Zhao Y et al (2011) MnO 2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem Commun 13:698–700.
  8. 8.
    Biercuk MJ, Llaguno MC, Radosavljevic M, et al (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769.
  9. 9.
    Munir KS, Li Y, Liang D, Qian M, Xu W, Wen C (2015) Effect of dispersion method on the deterioration , interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. JMADE 88:138–148. Google Scholar
  10. 10.
    Herrera-herrera AV, González-curbelo MÁ, Hernández-borges J, Rodríguez-delgado MÁ (2012) Carbon nanotubes applications in separation science : a review. Anal Chim Acta 734:1–30. CrossRefGoogle Scholar
  11. 11.
    Chastel F, Flahaut E, Peigney A, Rousset A (2000) Carbon nanotube – metal – oxide nanocomposites : microstructure, electrical conductivity, and mechanical properties. Acta Materialia 48:3803–3812CrossRefGoogle Scholar
  12. 12.
    Ahmad I, Cao H, Chen H et al (2010) Carbon nanotube toughened aluminium oxide nanocomposite. J Eur Ceram Soc 30:865–873CrossRefGoogle Scholar
  13. 13.
    Balázsi C, Shen Z, Kónya Z et al (2005) Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos Sci Technol 65:727–733CrossRefGoogle Scholar
  14. 14.
    Aromaa J, Forsén O (2006) Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode. Electrochim Acta 51:6104–6110. CrossRefGoogle Scholar
  15. 15.
    Javadi AH, Mirdamadi S, Faghihisani MA et al (2012) Fabrication of well-dispersed, multiwalled carbon nanotubes-reinforced aluminum matrix composites. New Carbon Mater 27:161–165CrossRefGoogle Scholar
  16. 16.
    Adegbenjo AO, Olubambi PA, Potgieter JH, Shongwe MB, Ramakokovhu M (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129. CrossRefGoogle Scholar
  17. 17.
    Lee K, Bin MC, Bin PS, Hong SH (2011) Mechanical and electrical properties of multiwalled CNT-alumina nanocomposites prepared by a sequential two-step processing of ultrasonic spray pyrolysis and spark plasma sintering. J Am Ceram Soc 94:3774–3779CrossRefGoogle Scholar
  18. 18.
    Salvetat J-P, Kulik AJ, Bonard J-M, et al (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11:161–165Google Scholar
  19. 19.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020Google Scholar
  20. 20.
    Cziga Z, Bala C (2008) Structural characterization of Si 3 N 4 – carbon nanotube interfaces by transmission electron microscopy. 68:1596–1599.
  21. 21.
    Inam F, Yan H, Reece MJ, Peijs T (2008) Dimethylformamide : an effective dispersant for making ceramic – carbon nanotube composites. Nanotechnology 19(19):195710. CrossRefGoogle Scholar
  22. 22.
    Sun J, Gao L (2003) Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation. Carbon 41:1063–1068CrossRefGoogle Scholar
  23. 23.
    Mo CB, Cha SI, Kim KT, et al (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol--gel process. Mater Sci Eng A 395:124–128.
  24. 24.
    Sabatier UP (2002) Tougher ceramics with nanotubes. 2002–2003Google Scholar
  25. 25.
    Atif R, Inam F (2016) Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J Nanotechnol 7:1174–1196. CrossRefGoogle Scholar
  26. 26.
    Moses A, Machaka R, Sipho S et al (2019) Dispersion characteristics , interfacial bonding and nanostructural evolution of MWCNT in Ti6Al4V powders prepared by shift speed ball milling technique. J Alloys Compd 785:356–366. CrossRefGoogle Scholar
  27. 27.
    Mohammadi M, Alfantazi A (2013) Anodic behavior and corrosion resistance of the Pb-MnO 2 composite anodes for metal electrowinning. J Electrochem Soc 160(6):C253–C261.
  28. 28.
    Ma R, Cheng S, Zhang X, Li S, Liu Z, Li X (2016) Hydrometallurgy oxygen evolution and corrosion behavior of low-MnO 2-content Pb-MnO 2 composite anodes for metal electrowinning. Hydrometallurgy 159:6–11. CrossRefGoogle Scholar
  29. 29.
    Lai Y, Li Y, Jiang L et al (2012) Electrochemical behaviors of co-deposited Pb/Pb--MnO2 composite anode in sulfuric acid solution--Tafel and EIS investigations. J Electroanal Chem 671:16–23CrossRefGoogle Scholar
  30. 30.
    Tshephe TS, Olubambi PA, Sigalas I, Ozoemena KI, Garrett J, Sule R (2015) Characterization of TiO 2 – MnO 2 composite electrodes synthesized using spark plasma sintering technique. Powder Technol 277:303–309. CrossRefGoogle Scholar
  31. 31.
    Datsyuk V, Kalyva M, Papagelis K, et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon N Y 46:833–840.
  32. 32.
    Hassan MTZ, Esawi AMK, Metwalli S (2014) Effect of carbon nanotube damage on the mechanical properties of aluminium--carbon nanotube composites. J Alloys Compd 607:215–222CrossRefGoogle Scholar
  33. 33.
    Hu Y, Guo C (2011) Carbon nanotubes and carbon nanotubes/metal oxide heterostructures: synthesis, characterization and electrochemical property. InTechGoogle Scholar
  34. 34.
    Lehman JH, Terrones M, Meunier V et al (2011) Evaluating the characteristics of multiwall carbon. Carbon N Y 49:2581–2602. CrossRefGoogle Scholar
  35. 35.
    Sreekanth PSR, Acharyya K, Talukdar I, Kanagaraj S (2014) Studies on structural defects on 60 co irradiated multi walled carbon nanotubes. Procedia Mater Sci 6:1967–1975. CrossRefGoogle Scholar
  36. 36.
    Munir KS, Qian M, Li Y, et al (2015) Quantitative Analyses of MWCNT‐Ti Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution. Adv Eng Mater 17:1660–1669.
  37. 37.
    Suzuki K et al. (2014) We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1% Control of a Proportional Hydraulic System. Intech Open 2:64.
  38. 38.
    Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Crit Rev Solid State Mater Sci 40:38–55. CrossRefGoogle Scholar
  39. 39.
    Bokobza L, Zhang J (2012) Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym Lett 6(7):601–608.
  40. 40.
    Microscopy F, Zdrojek M, Gebicki W et al (2004) Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. Solid State Phenom 99–100:265–268. Google Scholar
  41. 41.
    Zhang L, Li H, Yue K-T et al (2002) Effects of intense laser irradiation on Raman intensity features of carbon nanotubes. Phys Rev B 65:73401CrossRefGoogle Scholar
  42. 42.
    Yan X, Tay K, Yang Y (2006) Dispersing and functionalizing multiwalled carbon nanotubes in TiO 2 Sol. J Phys Chem B 110:25844–25849CrossRefGoogle Scholar
  43. 43.
    Lohse BH, Calka A, Wexler D (2007) Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon. J Alloys Compd 434:405–409CrossRefGoogle Scholar
  44. 44.
    Klein MV, Holy JA, Williams WS (1978) Raman scattering induced by carbon vacancies in Ti C x. Phys Rev B 17:1546CrossRefGoogle Scholar
  45. 45.
    Ye LL, Quan MX (1995) Synthesis of nanocrystalline TiC powders by mechanical alloying. Nanostruct Mater 5:25–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Senzeni Sipho Lephuthing
    • 1
    Email author
  • Avwerosuoghene Moses Okoro
    • 1
  • Oluremi Oladeji Ige
    • 1
  • Peter Apata Olubambi
    • 1
  1. 1.Centre for Nanoengineering and Tribocorrosion, Department of Metallurgy, School of Mining, Metallurgy and Chemical EngineeringUniversity of JohannesburgJohannesburgRepublic of South Africa

Personalised recommendations