Advertisement

Improved thermal FE numerical model/DoE based on the Taguchi method to estimate weld penetration/energy and non-metallic inclusions: a case study in Ti-containing TWIP steel butt joints

  • V. García-García
  • I. MejíaEmail author
  • F. Reyes-Calderón
ORIGINAL ARTICLE
  • 47 Downloads

Abstract

In this research work, a finite element (FE) numerical analysis was conducted to study the welding thermal field. The finite element model (FEM) was improved by means of the optimal mesh element size using statistical analysis of a design of experiment (DoE) based on the Taguchi method. Through the improved FEM, numerical model were carried out estimations of the penetration depth, heat dissipation phenomenon, and thermal energy input. Then, FE numerical results were linked to Matlab®. The FEM-Matlab® approach proposed the application of thermal energy predictions to estimate welding critical zones extensions and their possible non-metallic inclusions. The FEM-MATLAB® approach was applied to a case study: twinning-induced plasticity steel microalloyed with titanium (TWIP-Ti) weldments. Welding experiments were performed with the autogenous Gas Tungsten Arc Welding (GTAW) process in 6.3-mm thickness plates. The weld samples were analyzed metallographically to measure welding critical regions extensions. Both austenitic grain size and non-metallic inclusions were in good agreement with numerical results. The weld bead obtained by means of the optimal process parameters estimated by the FEM-Matlab® approach achieved full penetration and showed better microstructural characteristics according to the numerical estimation.

Keywords

FEM Taguchi Method TWIP-Ti GTAW Non-metallic inclusions 

Notes

Funding information

This study is supported by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) during the project CB-2012-01-0177572. The present research project was also supported by the Coordinación de la Investigación Científica-UMSNH (México) (CIC-1.8). Víctor García’s studies were sponsored by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México), N.B. 577720.

References

  1. 1.
    Berglund D, Alberg H, Runnemalm H (2003) Simulation of welding and stress relief heat treatment of an aero engine component. Finite Elem Anal Des 39:865–881CrossRefGoogle Scholar
  2. 2.
    Anca A, Cardona A, Risso J, Fachinotti VD (2011) Finite element modeling of welding processes. Appl Math Model 35:688–707MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Taylor GA, Hughes M, Strusevich N, Pericleous K (2002) Finite volume methods applied to the computational modelling of welding phenomena. Appl Math Model 26:311–322zbMATHCrossRefGoogle Scholar
  4. 4.
    Lindgren LE (2006) Numerical modelling of welding. Comput Method Appl Mech Eng 195:6710–6736zbMATHCrossRefGoogle Scholar
  5. 5.
    Schenk T, Richardson IM, Kraska M, Ohnimus S (2009) Modeling buckling distortion of DP600 overlap joints due to gas metal arc welding and the influence of the mesh density. Comput Mater Sci 46:977–986CrossRefGoogle Scholar
  6. 6.
    McDill JM, Goldak JA, Oddy AS, Bibby MJ (1987) Isoparametric quadrilaterals and hexahedrons for mesh-grading algorithms. Commun Appl Numer Methods Banner 3:155–163zbMATHCrossRefGoogle Scholar
  7. 7.
    Goldak J, Asadi M, Alena RG (2010) Why power per unit length of weld does not characterize a weld? Comput Mater Sci 48:390–401CrossRefGoogle Scholar
  8. 8.
    Attarha MJ, Sattari-Far I (2011) Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation. J Mater Process Technol 211:688–694CrossRefGoogle Scholar
  9. 9.
    Gery D, Long H, Maropoulos P (2005) Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol 167:393–401CrossRefGoogle Scholar
  10. 10.
    Taguchi G (1990) Introduction to Quality Engineering. Asian Productivity Organization, TokyoGoogle Scholar
  11. 11.
    Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches–A reference guide. Adv Eng Softw 39:483–496CrossRefGoogle Scholar
  12. 12.
    Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr Opin Solid State Mater Sci 15:141–168CrossRefGoogle Scholar
  13. 13.
    De Cooman BC, Kwon O, Chin KG (2012) State-of-the-knowledge on TWIP steel. Mater Sci Technol 28:513–527CrossRefGoogle Scholar
  14. 14.
    Frommeyer G, Brüx U, Neumann P (2003) Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int 43:438–446CrossRefGoogle Scholar
  15. 15.
    Mujica L, Weber S, Thomy C, Vollertsen F (2009) Microstructure and mechanical properties of laser welded austenitic high manganese steels. Sci Technol Weld Join 14:517–522CrossRefGoogle Scholar
  16. 16.
    Spencer PJ, Pratt JN (1967) A study of the vapour pressure of manganese using a new high-temperature torsion-effusion apparatus. Brit J Appl Phys 18:1473–1480CrossRefGoogle Scholar
  17. 17.
    Roncery LM, Weber S, Theisen W (2012) Welding of twinning-induced plasticity steels. Scr Mater 66:997–1001CrossRefGoogle Scholar
  18. 18.
    Wei YH, Hou LF, Bin Y (2014) Microstructure and mechanical properties of TWIP steel joints. J Iron Steel Res Int 21:749–756CrossRefGoogle Scholar
  19. 19.
    Mujica L, Weber S, Pinto H, Thomy C, Vollertsen F (2010) Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels. Mat Sci Eng A 527:2071–2078CrossRefGoogle Scholar
  20. 20.
    Saha DC, Chang I, Park YD (2014) Heat-affected zone liquation crack on resistance spot welded TWIP steels. Mater Charact 93:40–51CrossRefGoogle Scholar
  21. 21.
    Saha DC, Han S, Chin KG, Choi I, Park YD (2012) Weldability evaluation and microstructure analysis of resistance-spot-welded high-Mn steel in automotive application. Steel Res Int 83:352–357CrossRefGoogle Scholar
  22. 22.
    Yoo J, Kim B, Park Y, Lee C (2015) Microstructural evolution and solidification cracking susceptibility of Fe–18Mn–0.6 C–xAl steel welds. J Mater Sci 50(1):279–286CrossRefGoogle Scholar
  23. 23.
    Keil D, Zinke M, Pries H (2011) Weldability of novel Fe-Mn high-strength steels for automotive applications. Weld World 55:21–30CrossRefGoogle Scholar
  24. 24.
    Yoo J, Han K, Park Y, Choi J, Lee C (2014) Evaluation of solidification cracking susceptibility of Fe–18Mn–0· 6C steel welds. Sci Technol Weld Joining 19:514–520CrossRefGoogle Scholar
  25. 25.
    Kang SE, Banerjee JR, Mintz B (2012) Influence of S and AlN on hot ductility of high Al, TWIP steels. Mater Sci Technol 28:589–596CrossRefGoogle Scholar
  26. 26.
    Wang T, Zhang M, Xiong W, Liu R, Shi W, Li L (2015) Microstructure and tensile properties of the laser welded TWIP steel and the deformation behavior of the fusion zone. Mater Des 83:103–111CrossRefGoogle Scholar
  27. 27.
    Mi ZL, Tang D, Dai YJ, Jiang HT, Lü JC (2009) In-situ observation on the deformation behaviors of Fe-Mn-C TWIP steel. Int J Miner Metall Mater 16:646–649CrossRefGoogle Scholar
  28. 28.
    Amirthalingam M, Hermans MJ, Zhao L, Richardson IM Quantitative analysis of microstructural constituents in welded transformation-induced-plasticity steels. Metall Mater Trans A 41:431–440CrossRefGoogle Scholar
  29. 29.
    Salas-Reyes AE, Mejía I, Bedolla-Jacuinde A, Boulaajaj A, Calvo J, Cabrera JM (2014) Hot ductility behavior of high-Mn austenitic Fe–22Mn–1.5 Al–1.5 Si–0.45 C TWIP steels microalloyed with Ti and V. Mat Sci Eng A 611:77–89CrossRefGoogle Scholar
  30. 30.
    Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305CrossRefGoogle Scholar
  31. 31.
    DuPont JN, Marder AR (1995) Thermal efficiency of arc welding processes. Weld J 74:406Google Scholar
  32. 32.
    Zhu XK, Chao YJ (2002) Effects of temperature-dependent material properties on welding simulation. Comput Struct 80:967–976CrossRefGoogle Scholar
  33. 33.
    Zeng Z, Wang L, Wang Y, Zhang H (2009) Numerical and experimental investigation on temperature distribution of the discontinuous welding. Comput Mater Sci 44:1153–1162CrossRefGoogle Scholar
  34. 34.
    Wang Y, Wang L, Di X, Shi Y, Bao X, Gao X (2013) Simulation and analysis of temperature field for in-service multi-pass welding of a sleeve fillet weld. Comput Mater Sci 68:198–205CrossRefGoogle Scholar
  35. 35.
    Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. John Wiley & Sons, USAGoogle Scholar
  36. 36.
    Malik AM, Qureshi EM, Dar NU, Khan I (2008) Analysis of circumferentially arc welded thin-walled cylinders to investigate the residual stress fields. Thin-Walled Struct 46:1391–1401CrossRefGoogle Scholar
  37. 37.
    Ueda Y, Murakawa H, Ma N (2012) Welding Deformation and Residual Stress Prevention. Butterworth-Heinemann, USAGoogle Scholar
  38. 38.
    Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase-change application to the melting of a pure metal. Numer Heat Transfer 13:297–318CrossRefGoogle Scholar
  39. 39.
    Mujica L, Weber S, Hunold G, Theisen W (2011) Development and characterization of novel corrosion-resistant TWIP steels. Steel Res Int 82:26–31CrossRefGoogle Scholar
  40. 40.
    Adams CM (1958) Cooling rates and peak temperatures in fusion welding. Weld J 37:44–54Google Scholar
  41. 41.
    Park JH, Kim DJ, Min DJ (2012) Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall Mater Trans A 43:2316–2324CrossRefGoogle Scholar
  42. 42.
    Babu SS, David SA, Vitek JM, Mundra K, DebRoy T (1995) Development of macro-and microstructures of carbon–manganese low alloy steel welds: inclusion formation. Mater Sci Technol 11:186–199CrossRefGoogle Scholar
  43. 43.
    Heinze C, Schwenk C, Rethmeier M (2011) Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion. Simul Model Pract Theory 19:1847–1859CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • V. García-García
    • 1
    • 2
  • I. Mejía
    • 1
    Email author
  • F. Reyes-Calderón
    • 2
  1. 1.Instituto de Investigación en Metalurgia y MaterialesUniversidad Michoacana de San Nicolás de HidalgoMoreliaMéxico
  2. 2.Departamento de Metal Mecánica, Posgrado en Metalurgia/Doctorado en Ciencias en Ingeniería-Tecnológico Nacional de MéxicoInstituto Tecnológico de MoreliaMoreliaMéxico

Personalised recommendations