Advertisement

Effect of polygon order on additively manufactured lattice structures: a method for defining the threshold resolution for lattice geometry

  • A. Alghamdi
  • B. Lozanovski
  • M. McMillan
  • R. Tino
  • D. Downing
  • X. Zhang
  • I. Kelbassa
  • P. Choong
  • M. Qian
  • M. Brandt
  • M. LearyEmail author
ORIGINAL ARTICLE
  • 62 Downloads

Abstract

Additive manufacture (AM) enables the fabrication of highly efficient lattice structures. However, the mathematical efficiency of characterising AM lattice geometry can be poor, potentially restricting the commercial application of AM lattice structures. This research quantifies the effect of the polygon order used to characterise the geometric resolution of lattice strut elements on the associated manufacturability and geometric qualities of the manufactured lattice. The effect of these design parameters on manufactured quality is experimentally determined for aluminium and titanium specimens fabricated by selective laser melting (SLM), although the method can be generally applied to any AM technology. This research finds that geometric thresholds exist, below which additional geometric resolution does not result in increased part quality. These thresholds are a function of material, lattice inclination angle, cross-sectional area and the polynomial order used to represent the cross section. These findings enable significantly reduced computational cost in managing AM lattice structures, and can be directly integrated with algorithmic methods for the optimisation of AM lattice structures.

Keywords

Selective laser melting (SLM) Electron beam melting (EBM) Lattice Design for additive manufacture Stereolithographic (STL) file format 

Notes

Acknowledgements

The authors acknowledge use of facilities within the RMIT Advanced Manufacturing Precinct and the RMIT Microscopy and Microanalysis Facility. This research was conducted by the Australian Research Council Industrial Transformation Training Centre in Additive Biomanufacturing (IC160100026) http:// www.additivebiomanufacturing.org.

References

  1. 1.
    Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data and interpolation in layered manufacturing. J Mater Process Technol 209(2):664–671CrossRefGoogle Scholar
  2. 2.
    ASTM standard F2792-12a, D (2012) F2792-12a. Standard terminology for additive manufacturing technologies. ASTM International, West ConshohockenGoogle Scholar
  3. 3.
    Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162CrossRefGoogle Scholar
  4. 4.
    Brandt M, Sun SJ, Leary M, Feih S, Elambasseril J, Liu QC (2013) High-value SLM aerospace components: from design to manufacture. Adv Mater Res 633:135–147CrossRefGoogle Scholar
  5. 5.
    Clijsters S, Craeghs T, Buls S, Kempen K, Kruth JP (2014) In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75(5-8):1089–1101CrossRefGoogle Scholar
  6. 6.
    Croft HT (1991) Unsolved problems in geometry: unsolved problems in intuitive mathematics. Springer New York, New YorkCrossRefGoogle Scholar
  7. 7.
    Drizo A, Pegna J (2006) Environmental impacts of rapid prototyping: an overview of research to date. Rapid Prototyp J 12(2):64–71CrossRefGoogle Scholar
  8. 8.
    Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRefGoogle Scholar
  9. 9.
    Gebhardt A, Schmidt F-M, Hötter J-S, Sokalla W, Sokalla P (2010) Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Phys Procedia 5:543–549CrossRefGoogle Scholar
  10. 10.
    Gibson R, Stucker (2010) Additive manufacturing technologies - rapid prototyping to direct digital manufacturingGoogle Scholar
  11. 11.
    Gibson I, Rosen D, Stucker B (2015) Powder Bed Fusion Processes, in Additive Manufacturing Technologies. Springer pp 107–145Google Scholar
  12. 12.
    Hiller JD, Lipson H (2009) STL 2.0: a proposal for a universal multi-material additive manufacturing file format. In: Proceedings of the Solid Freeform Fabrication SymposiumGoogle Scholar
  13. 13.
    ISO/ASTM (2015) Additive manufacturing — general principles — terminology. 52900. ISO/ASTM, Geneva 52900Google Scholar
  14. 14.
    ISO/ASTM (2016) Standard specification for additive manufacturing file format (AMF) version 1.2Google Scholar
  15. 15.
    Jywe W-Y, Liu C-H, Chen C o-K (1999) The min–max problem for evaluating the form error of a circle. Measurement 26(4):273–282CrossRefGoogle Scholar
  16. 16.
    Leary M, Babaee M, Brandt M, Subic A (2013) Feasible build orientations for self-supporting fused deposition manufacture: a novel approach to space-filling tesselated geometries. Adv Mater Res 633:148–168CrossRefGoogle Scholar
  17. 17.
    Ma D, Lin F, Chua CK (2001) Rapid prototyping applications in medicine. Part 2: STL file generation and case studies. Int J Adv Manuf Technol 18:118–127CrossRefGoogle Scholar
  18. 18.
    Mani K, Kulkarni P, Dutta D (1999) Region-based adaptive slicing . Computer-Aided Design 31: 317–333Google Scholar
  19. 19.
    Marcu T, Todea M, Gligor I, Berce P, Popa C (2012) Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl Surf Sci 258(7):3276–3282CrossRefGoogle Scholar
  20. 20.
    Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84:1391–1411Google Scholar
  21. 21.
    Mazur M, Leary M, McMillan M, Elambasseril J, Brandt M (2016a) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22(3):504–518CrossRefGoogle Scholar
  22. 22.
    Mazur M, Leary M, McMillan M, Sun S, Shidid D, Brandt M (2016b) Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). Laser Additive Manufacturing: Materials, Design, Technologies, and Applications: 119–161Google Scholar
  23. 23.
    Mazur M, Brincat P, Leary M, Brandt M (2017) Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol:1–20Google Scholar
  24. 24.
    McMillan ML, Jurg M, Leary M, Brandt M (2017a) Programmatic generation of computationally efficient lattice structures for additive manufacture. Rapid Prototyp J 23(3):486–494CrossRefGoogle Scholar
  25. 25.
    McMillan M, Leary M, Brandt M (2017b) Computationally efficient finite difference method for metal additive manufacturing: a reduced-order DFAM tool applied to SLM. Mater Des 132:226–243CrossRefGoogle Scholar
  26. 26.
    Promoppatum P, Onler R, Yao S-C (2017) Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 240:262–273CrossRefGoogle Scholar
  27. 27.
    Sexton L, Lavin S, Byrne G, Kennedy A (2002) Laser cladding of aerospace materials. J Mater Process Technol 122(1):63–68CrossRefGoogle Scholar
  28. 28.
    Shidid D, Leary M, Choong P, Brandt M (2016) Just-in-time design and additive manufacture of patient-specific medical implants. Phys Procedia 83:4–14CrossRefGoogle Scholar
  29. 29.
    Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213(4):589–597CrossRefGoogle Scholar
  30. 30.
    Vaithilingam J, Kilsby S, Goodridge RD, Christie SD, Edmondson S, Hague RJ (2015) Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater Sci Eng C Mater Biol Appl 46:52–61CrossRefGoogle Scholar
  31. 31.
    Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRefGoogle Scholar
  32. 32.
    Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRefGoogle Scholar
  33. 33.
    Williams CB, Cochran JK, Rosen DW (2010) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53(1-4):231–239CrossRefGoogle Scholar
  34. 34.
    Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:1–10CrossRefGoogle Scholar
  35. 35.
    Zhai Y, Lados DA, LaGoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66(5):808–816CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • A. Alghamdi
    • 1
  • B. Lozanovski
    • 1
    • 2
  • M. McMillan
    • 1
  • R. Tino
    • 1
    • 2
  • D. Downing
    • 1
    • 2
  • X. Zhang
    • 1
  • I. Kelbassa
    • 3
  • P. Choong
    • 2
    • 4
  • M. Qian
    • 1
    • 2
  • M. Brandt
    • 1
    • 2
  • M. Leary
    • 1
    • 2
    Email author
  1. 1.RMIT Centre for Additive Manufacture, School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.ARC Training Centre in Additive BiomanufacturingBrisbaneAustralia
  3. 3.Siemens AG, Power and GasBerlinGermany
  4. 4.Department of SurgerySt. Vincent’s HospitalMelbourne VICAustralia

Personalised recommendations