Advertisement

Jerk decision for free-form surface effects in multi-axis synchronization manufacturing

  • Wei-Han Weng
  • Chung-Feng Jeffrey KuoEmail author
ORIGINAL ARTICLE

Abstract

Five-axis CNC tool machines have been widely used in the aerospace and automotive industries for complex and special-purpose mold production as smart machines. Obtaining good surface quality and manufacturing speed for the designed parts is always a challenging issue in a high-speed machining process. Researchers have provided several algorithms to smooth the trajectory profile or servo controller design to get good product quality. For the multi-axis synchronous motion, only a few researchers have discussed the interaction between the machine’s dynamic ability and tool path/trajectory generation. To ensure synchronous motion, the dynamic performance of each axis becomes a constraint for the frequency of the designed trajectory command. According to this requirement, a maximum jerk value in the trajectory generator could be calculated first, and then, combined with the machining method selected for the parts. A novel jerk value decision-making process is proposed for the parts machining process in this study. This new approach to obtain a better finished surface quality and shorten the machining time without adding supplemental equipment or information is demonstrated experimentally on a five-axis CNC machine for a free-form vane that could help machining operators take maximum advantage of the smart production techniques.

Keywords

Jerk Trajectory Feed driver Five-axis machine tool Synchronous motion Free-form mold 

Notes

References

  1. 1.
    Jia Z, Ma J, Song D, Wang F, Liu W (2018) A review of contouring-error reduction method in multi-axis CNC machining. Int J Mach Tools Manuf 125:34–54.  https://doi.org/10.1016/j.ijmachtools.2017.10.008 CrossRefGoogle Scholar
  2. 2.
    Erkorkmaz K, Altintas Y (2001) High speed CNC system design, part I: jerk limited trajectory generation and quantic spline interpolation. Int J Mach Tools Manuf 41:1323–1345.  https://doi.org/10.1016/S0890-6955(01)00002-5 CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Ye P, Wu J, Zhang H (2018) An optimal curvature-smooth transition algorithm with axis jerk limitations along linear segments. Int J Adv Manuf Technol 95:875–888.  https://doi.org/10.1007/s00170-017-1274-1 CrossRefGoogle Scholar
  4. 4.
    Chen M, Xi X, Zhao W, Chen H, Liu H (2017) A universal velocity limit curve generator considering abnormal tool path geometry for CNC machine tools. J Manuf Syst 44:295–301.  https://doi.org/10.1016/j.jmsy.2017.04.010 CrossRefGoogle Scholar
  5. 5.
    Sencer B, Ishizaki K, Shamoto E (2015) High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools. CIRP Ann 64:369–372.  https://doi.org/10.1016/j.cirp.2015.04.102 CrossRefGoogle Scholar
  6. 6.
    Chen Y, More P, Liu C (2019) Identification and verification of location errors of rotary axes on five-axis machine tools by using a touch-trigger probe and a sphere. Int J Adv Manuf Technol 100:2653–2667.  https://doi.org/10.1007/s00170-018-2863-3 CrossRefGoogle Scholar
  7. 7.
    Ha C, Lee D (2018) Analysis of embedded prefilters in motion profiles. IEEE Trans Ind Electron 65:1481–1489.  https://doi.org/10.1109/TIE.2017.2726959 CrossRefGoogle Scholar
  8. 8.
    Cai Y, Zhang F, Xi X (2019) Cutter orientation planning in NC machining for surface similar to revolution body with considering kinematic characteristics. Int J Adv Manuf Technol 100:503–513.  https://doi.org/10.1007/s00170-018-2755-6 CrossRefGoogle Scholar
  9. 9.
    Sun Y, Zhao Y, Bao Y, Guo D (2014) A novel adaptive-feedrate interpolation method for NURBS tool path with drive constraints. Int J Mach Tools Manuf 77:74–81.  https://doi.org/10.1016/j.ijmachtools.2013.11.002 CrossRefGoogle Scholar
  10. 10.
    Liu X, Li Y, Li Q (2018) A region-based 3+2-axis machining toolpath generation method for freeform surface. Int J Adv Manuf Technol 97:1149–1169.  https://doi.org/10.1007/s00170-018-1982-1 CrossRefGoogle Scholar
  11. 11.
    Li B, Zhang H, Ye P (2018) Error constraint optimization for corner smoothing algorithms in high-speed CNC machine tools. Int J Adv Manuf Technol 99:635–646.  https://doi.org/10.1007/s00170-018-2489-5 CrossRefGoogle Scholar
  12. 12.
    Sencer B, Tajima S (2017) Frequency optimal feed motion planning in computer numerical controlled machine tools for vibration avoidance. J Manuf Sci E-T ASME 139:011006.  https://doi.org/10.1115/1.4034140 CrossRefGoogle Scholar
  13. 13.
    Core M, Shinonawanik P, Wongratanaphisan T (2018) Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control. Mech Syst Signal Process 104:106–119.  https://doi.org/10.1016/j.ymssp.2017.10.029 CrossRefGoogle Scholar
  14. 14.
    Mansour S, Seethaler R (2017) Feedrate optimization for computer numerically controlled machine tools using modeled and measured process constraints. J Manuf Sci E-T ASME 139:011012.  https://doi.org/10.1115/1.4033933 CrossRefGoogle Scholar
  15. 15.
    Tounsi N, Bailey T, Elbestawi M (2003) Identification of acceleration deceleration profile of feed drive systems in CNC machines. Int J Mach Tools Manuf 43:441–451.  https://doi.org/10.1016/S0890-6955(02)00304-8 CrossRefGoogle Scholar
  16. 16.
    Altintas Y, Sencer B (2010) High speed contouring control strategy for five-axis machine tools. CIRP Ann Manuf Technol 59:417–420.  https://doi.org/10.1016/j.cirp.2010.03.019 CrossRefGoogle Scholar
  17. 17.
    Bo P, Barton M, Plakhotnik D, Pottman H (2016) Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Comput Aided Des 79:1–11.  https://doi.org/10.1016/j.cad.2016.04.004 CrossRefGoogle Scholar
  18. 18.
    Yao W (2015) Modeling and synchronous control of dual mechanically coupled linear servo system. J Dyn Syst T ASME 137:041009.  https://doi.org/10.1115/1.4028688 CrossRefGoogle Scholar
  19. 19.
    Shen H, Sun Y, Zhang L, Fu J (2018) A parameter zone subdivision method for rotary axes motion optimization in five-axis toolpath generation using inverse evaluation mechanism. Int J Adv Manuf Technol 98:3115–3131.  https://doi.org/10.1007/s00170-018-2455-2 CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Zhao M, Ye P, Jiang J, Zhang H (2018) Optimal curvature-smooth transition and efficient feedrate optimization method with axis kinematic limitations for linear toolpath. Int J Adv Manuf Technol 99:169–179.  https://doi.org/10.1007/s00170-018-2496-6 CrossRefGoogle Scholar
  21. 21.
    Ni H, Hu T, Zhang C, Ji S, Chen Q (2018) An optimized feedrate scheduling method for CNC machining with round-off error compensation. Int J Adv Manuf Technol 97:2369–2381.  https://doi.org/10.1007/s00170-018-1986-x CrossRefGoogle Scholar
  22. 22.
    Han J, Jiang Y, Tian X, Chen F, Lu C, Xia L (2018) A local smoothing interpolation method for short line segments to realize continuous motion of tool axis acceleration. Int J Adv Manuf Technol 95:1729–1742.  https://doi.org/10.1007/s00170-017-1264-3 CrossRefGoogle Scholar
  23. 23.
    Sencer B, Shamoto E (2012) The effect of jerk parameter of the reference motion trajectory on the oscillatory behavior of feed drive systems. Proc of JSPE Spring Conference.  https://doi.org/10.11522/pscjspe.2012S.0.261.0
  24. 24.
    Barre P, Bearee R, Borne P, Dumetz E (2005) Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. J Intell Robot Syst 42:275–293.  https://doi.org/10.1007/s10846-004-4002-7 CrossRefGoogle Scholar
  25. 25.
    Lambrechts P, Matthijs B, Maarten S (2005) Trajectory planning and feedforward design for electromechanical motion systems. Control Eng Pract 13:145–157.  https://doi.org/10.1016/j.conengprac.2004.02.010 CrossRefGoogle Scholar
  26. 26.
    HEIDENHAIN Technical manual iTNC 530 (2013) HEIDENHAIN, GermanyGoogle Scholar
  27. 27.
    Lambrechts P (2003) Trajectory planning and feedforward design for electromechanical motion systems: version 2. DCT rapporten. http://www.dct.tue.nl/New/Lambrechts/DCT_2003_18.pdf
  28. 28.
    Lin C, Lee C (2017) Remote servo tuning system for multi-axis CNC machine tools using a virtual machine tool approach. Appl Sci 7:776.  https://doi.org/10.3390/app7080776 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science & EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations