Advertisement

Measures towards roll forming at the physical limit of energy consumption

  • Tilman Traub
  • Burcu Güngör
  • Peter GrocheEmail author
ORIGINAL ARTICLE
  • 76 Downloads

Abstract

The optimization of energy efficiency of industrial processes is a desirable objective. Roll forming is a continuous sheet metal forming process gradually producing profile-shaped parts. Although cold forming processes are usually comparatively energy-efficient, in roll forming, an efficiency of deformation of 25% and less has been observed in previous studies. At the same time, a significant energy-saving potential has been identified by means of the evaluation of drive torques and the readjustment of tool velocities. However, the efficiency of deformation is still small in comparison to other cold forming processes. In this study, a new decision rule for optimizing the tool velocity in roll forming is proposed and tested experimentally and numerically. The objective of this decision rule is, firstly, to avoid decelerating drive torques that counteract the forming process and need to be compensated by additional drive torques in other process steps. Secondly, the accelerating drive torques should not exceed a certain limit in order to ensure an effective process with respect to wear and surface quality of the products. The results show that a reduction of the energy demand of 66% in comparison with a conventionally operated roll forming process is possible resulting in an efficiency of deformation of 89%. Furthermore, the mechanism of the optimization is validated experimentally using a novel sensor concept, a sensorial parallel key.

Keywords

Metal forming Roll forming Energy efficiency Decision-making 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
  2. 2.
    US Energy Information Administration (2017) International Energy Outlook. Report: DOE/EIA-0484(2017). https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf. Accessed 08 January 2019
  3. 3.
    Allwood JM, Cullen JM (2012) Sustainable materials with both eyes open. UIT Cambridge, CambridgeGoogle Scholar
  4. 4.
    Halmos GT (2006) Roll forming handbook. CRC Press Tailor & Francis Group, Boca RatonGoogle Scholar
  5. 5.
    Ditges G (1966) Beitrag zur Bestimmung von Einformgeometrie und Umformenergie bei der Rohr-Herstellung. Dissertation, RWTH AachenGoogle Scholar
  6. 6.
    Traub T, Gregorio M, Groche P (2018) A framework illustrating decision-making in operator assistance systems and its application to a roll forming process. Int J Adv Manuf Technol 97:3701–3710CrossRefGoogle Scholar
  7. 7.
    Lange K (1985) Handbook of metal forming. McGraw-Hill Book Company, New YorkGoogle Scholar
  8. 8.
    Roland Berger Strategy Consultants GmbH (2012) Mastering product complexity. DüsseldorfGoogle Scholar
  9. 9.
    Park HS, Anh TV (2011) Optimization of bending sequence in roll forming using neural network and genetic algorithm. J Mech Sci Technol 25(8):2127–2136CrossRefGoogle Scholar
  10. 10.
    Abeyrathna B, Rolfe B, Hodgson P, Weiss M (2016) An extension of the flower pattern diagram for roll forming. Int J Adv Manuf Technol 83(9-12):1683–1695CrossRefGoogle Scholar
  11. 11.
    Groche P, Beiter P, Henkelmann M (2008) Prediction and inline compensation of springback in roll forming of high and ultra-high strength steels. Prod Eng 2(4):401–407CrossRefGoogle Scholar
  12. 12.
    Wiebenga JH, Weiss M, Rolfe B, Van Den Boogaard AH (2013) Product defect compensation by robust optimization of a cold roll forming process. J Mater Process Technol 213(6):978–986CrossRefGoogle Scholar
  13. 13.
    Abeyrathna B, Rolfe B, Hodgson P, Weiss M (2016) A first step towards a simple in-line shape compensation routine for the roll forming of high strength steel. Int J Mater Form 9(3):423–434CrossRefGoogle Scholar
  14. 14.
    Eichler U (1987) Walzprofilieren von Standardquerschnitten auf einer mehrgerüstigen Maschine mit einzeln angetriebenen Werkzeugwellen. Dissertation, TH DarmstadtGoogle Scholar
  15. 15.
    Groche P, Müller C, Traub T, Butterweck K (2014) Experimental and numerical determination of roll forming loads. Steel Res Int 85:112–122CrossRefGoogle Scholar
  16. 16.
    Groche P, Traub T (2017) Passfeder zur Bestimmung des übertragenen Drehmomentes. Patent, DE102016110577A1Google Scholar
  17. 17.
    Paralikas J, Salonitis K, Chryssolouris G (2013) Energy efficiency of cold roll forming process. Int J Adv Manuf Technol 66:1–14CrossRefGoogle Scholar
  18. 18.
    Traub T, Groche P (2018) Energy efficient roll forming processes through numerical simulations. J Phys 1063:012182Google Scholar
  19. 19.
    Larrañaga J A (2011) Geometrical accuracy improvement in flexible roll forming process by means of local heating. Dissertation, Mondragon UnibertsitateaGoogle Scholar
  20. 20.
    Lindgren M (2008) Validation of finite element model of roll forming. In: Proc Int. Conf. of the International Deep-Drawing Research Group - IDDRGGoogle Scholar
  21. 21.
    Gehring A, Saal H (2007) Sensitivity analysis of technological and material parameters in roll forming. AIP Conf Proc 908(1):781–786CrossRefGoogle Scholar
  22. 22.
    Mueller C, Gu X, Baeumer L, Groche P (2014) Influence of friction on the loads in a roll forming simulation with compliant rolls. Key Eng Mater 611:436–643CrossRefGoogle Scholar
  23. 23.
    Abvabi A, Rolfe B, Larranaga J, Glados L, Yang C, Weiss M (2012) Using the solid-shell element to model the roll forming of large radii profiles. Steel Research Journal: Proceedings of the 14th International Conference on Metal Forming: 711-714Google Scholar
  24. 24.
    DIN 6885-1 (1968) Mitnehmerverbindungen ohne Anzug; Paßfedern, Nuten, hohe Form. German industrial standard 6885-1. Beuth-Vertrieb GmbH, BerlinGoogle Scholar
  25. 25.
    Traub T, Chen X, Groche P (2017) Experimental and numerical investigation of the bending zone in roll forming. Int J Mech Sci 131-132:956–970CrossRefGoogle Scholar
  26. 26.
    Hollomon JH (1945) Tensile deformation. Trans Metall Soc AIME 162:268–290Google Scholar
  27. 27.
    Dassault Systèmes (2013) Abaqus analysis user’s manual Version 6.13Google Scholar
  28. 28.
    EN 10162 (2003) Cold-rolled steel sections - technical delivery conditions -dimensional and cross-sectional tolerances. European industrial standard 10162. Beuth-Vertrieb GmbH, BerlinGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technische Universität DarmstadtInstitut für Produktionstechnik und Umformmaschinen (PtU)DarmstadtGermany

Personalised recommendations