Advertisement

A collaborative robot for the factory of the future: BAZAR

  • Andrea CherubiniEmail author
  • Robin Passama
  • Benjamin Navarro
  • Mohamed Sorour
  • Abdellah Khelloufi
  • Osama Mazhar
  • Sonny Tarbouriech
  • Jihong Zhu
  • Olivier Tempier
  • André Crosnier
  • Philippe Fraisse
  • Sofiane Ramdani
ORIGINAL ARTICLE

Abstract

This paper introduces BAZAR, a collaborative robot that integrates the most advanced sensing and actuating devices in a unique system designed for the Industry 4.0. We present BAZAR’s three main features, which are all paramount in the factory of the future. These features are: mobility for navigating in dynamic environments, interaction for operating side-by-side with human workers, and dual-arm manipulation for transporting and assembling bulky objects.

Keywords

Efficient Flexible and modular production Robotics Smart assembly Human-robot co-working Real industrial world case studies Digital manufacturing and assembly system Machine learning 

Notes

Funding information

This work has received funding from the European Union Horizon 2020 Research and Innovation Programme as part of the project VERSATILE under grant agreement no. 731330.

References

  1. 1.
    ISO 10218-1:2011 (2006) Robot for industrial environments - Safety requirements - Part 1 : Robot. Tech. rep., International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  2. 2.
    Adorno BV, Fraisse P, Druon S (2010) Dual position control strategies using the cooperative dual task-space framework. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  3. 3.
    Akella P, Peshkin M, Colgate E, Wannasuphoprasit W, Nagesh N, Wells J, Holland S, Pearson T, Peacock B (1999) Cobots for the automobile assembly line. In: IEEE international conference on robotics and automationGoogle Scholar
  4. 4.
    Battison R (1978) Lexical borrowing in american sign language. ERICGoogle Scholar
  5. 5.
    Betourne A, Campion G (1996) Kinematic modelling of a class of omnidirectional mobile robots. In: IEEE international conference on robotics and automation, pp 3631–3636.  https://doi.org/10.1109/ROBOT.1996.509266
  6. 6.
    Bhattacharya S, Murrieta-Cid R, Hutchinson S (2007) Optimal paths for landmark-based navigation by differential-drive robots with field-of-view constraints. IEEE Trans on Robotics 23(1):47–59CrossRefGoogle Scholar
  7. 7.
    Bortolini M, Faccio M, Gamberi M, Pilati F (2017) Multi-objective assembly line balancing considering component picking and ergonomic risk. Comput Ind Eng 112:348–367CrossRefGoogle Scholar
  8. 8.
    Campion G, Bastin G, Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans on Robotics and Automation 12(1):47–62.  https://doi.org/10.1109/70.481750 CrossRefGoogle Scholar
  9. 9.
    Cao Z, Simon T, Wei SE, Sheikh Y (2017) Realtime multi-person 2D pose estimation using part affinity fields. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  10. 10.
    Cariou C, Lenain R, Thuilot B, Berducat M (2009) Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. Journal of Field Robotics 26(6-7):504–518.  https://doi.org/10.1002/rob.20282 CrossRefGoogle Scholar
  11. 11.
    Chamberland S, Beaudry E, Clavien L, Kabanza F, Michaud F, Lauriay M (2010) Motion planning for an omnidirectional robot with steering constraints. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4305–4310.  https://doi.org/10.1109/IROS.2010.5648987
  12. 12.
    Cherubini A, Colafrancesco M, Oriolo G, Freda L, Chaumette F (2009) Comparing appearance-based controllers for nonholonomic navigation from a visual memory. In: IEEE ICRA 2009 workshop on safe navigation in open and dynamic environments: application to autonomous vehiclesGoogle Scholar
  13. 13.
    Cherubini A, Grechanichenko B, Spindler F, Chaumette F (2013) Avoiding moving obstacles during visual navigation. In: IEEE international conference on robotics and automationGoogle Scholar
  14. 14.
    Cherubini A, Passama R, Fraisse P, Crosnier A (2015) A unified multimodal control framework for human-robot interaction. Robot Auton Syst 70:106–115CrossRefGoogle Scholar
  15. 15.
    Chiacchio P, Chiaverini S (1998) 1. In: Complex robotic systems, Springer, BerlinGoogle Scholar
  16. 16.
    Chiacchio P, Chiaverini S, Siciliano B (1996) Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system. J Dyn Syst Meas Control 118(4):691–697CrossRefGoogle Scholar
  17. 17.
    Chiaverini S, Egeland O, Kanestrom RK (1991) Achieving user-defined accuracy with damped least-squares inverse kinematics. In: 5th international conference advanced robotics, vol 1, pp 672–677.  https://doi.org/10.1109/ICAR.1991.240676
  18. 18.
    Connette C, Hägele M, Verl A (2012) Singularity-free state-space representation for non-holonomic, omnidirectional undercarriages by means of coordinate switching. In: IEEE/RSJ internatioal conference on intelligent robots and systems, pp 4959–4965.  https://doi.org/10.1109/IROS.2012.6386131
  19. 19.
    Connette CP, Hofmeister S, Bubeck A, Haegele M, Verl A (2010) Model-predictive undercarriage control for a pseudo-omnidirectional, wheeled mobile robot. In: ISR 2010 (41st international symposium on robotics) and ROBOTIK 2010 (6th german conference on robotics), pp 1–6Google Scholar
  20. 20.
    Connette CP, Parlitz C, Hagele M, Verl A (2009) Singularity avoidance for over-actuated, pseudo-omnidirectional, wheeled mobile robots. In: IEEE international conference on robotics and automation, pp 4124–4130.  https://doi.org/10.1109/ROBOT.2009.5152450
  21. 21.
    Connette CP, Pott A, Hagele M, Verl A (2008) Control of an pseudo-omnidirectional, non-holonomic, mobile robot based on an icm representation in spherical coordinates. In: 2008 47th IEEE conference on decision and control, pp 4976–4983.  https://doi.org/10.1109/CDC.2008.4738958
  22. 22.
    Connette CP, Pott A, Hägele M, Verl A (2010) Addressing input saturation and kinematic constraints of overactuated undercarriages by predictive potential fields. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, pp 4775–4781.  https://doi.org/10.1109/IROS.2010.5652685
  23. 23.
    Dean-Leon E, Pierce B, Bergner F, Mittendorfer P, Ramirez-Amaro K, Burger W, Cheng G (2017) TOMM: tactile omnidirectional mobile manipulator. In: IEEE international conference on robotics and automationGoogle Scholar
  24. 24.
    Dietrich A, Wimböck T, Albu-Schäffer A, Hirzinger G (2011) Singularity avoidance for nonholonomic, omnidirectional wheeled mobile platforms with variable footprint. In: IEEE international conference on robotics and automation, pp 6136–6142.  https://doi.org/10.1109/ICRA.2011.5979549
  25. 25.
    Elad M, Bruckstein AM (2002) A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans Inf Theory 48(9):2558–2567MathSciNetCrossRefGoogle Scholar
  26. 26.
    Faroni M, Beschi M, Visioli A, Tosatti LM (2016) A global approach to manipulability optimisation for a dual-arm manipulator. In: IEEE international conference on emerging technologies and factory automation (ETFA)Google Scholar
  27. 27.
    Felip J, Morales A (2014) A solution for the cap unscrewing task with a dual arm sensor-based system. In: IEEE-RAS international conference on humanoid robotsGoogle Scholar
  28. 28.
    Folio D, Cadenat V (2008) A sensor-based controller able to treat total image loss and to guarantee non-collision during a vision-based navigation task. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  29. 29.
    Gauthier JP, Berret B, Jean F (2010) A biomechanical inactivation principle. Proc Steklov Inst Math 268(1):93–116MathSciNetCrossRefGoogle Scholar
  30. 30.
    Giordano PR, Fuchs M, Albu-Schaffer A, Hirzinger G (2009) On the kinematic modeling and control of a mobile platform equipped with steering wheels and movable legs. In: IEEE international conference on robotics and automation, pp 4080– 4087Google Scholar
  31. 31.
    Heyer C (2010) Human-robot interaction and future industrial robotics applications. In: IEEE/RSJ international conference on robots and intelligent systems, pp 4749–4754Google Scholar
  32. 32.
    Hoy M, Matveev AS, Savkin AV (2015) Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey. Robotica 33:463–497CrossRefGoogle Scholar
  33. 33.
    Hu Y, Huang B, Yang GZ (2015) Task-priority redundancy resolution for co-operative control under task conflicts and joint constraints. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  34. 34.
    Kanoun O, Lamiraux F, Wieber PB (2011) Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans on Robotics 27(4):785–792CrossRefGoogle Scholar
  35. 35.
    Khelloufi A, Achour N, Passama R, Cherubini A (2017) Tentacle-based moving obstacle avoidance for omnidirectional robots with visibility constraints. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  36. 36.
    Khelloufi A, Achour N, Passama R, Cherubini A (2018) Sensor-based navigation of omnidirectional wheeled robots dealing with both collisions and occlusions. Robotica (under revision). https://hal.archives-ouvertes.fr/hal-01625946v4/document
  37. 37.
    LaValle SM (2006) Planning algorithms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. 38.
    Lemburg J, Fernandez G, Eich M, Mronga D, Kampmann P, Vogt A, Aggarwal A, Shi Y, Kirchner F (2011) AILA - design of an autonomous mobile dual-arm robot. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  39. 39.
    Low K, Leow Y (2005) Kinematic modeling, mobility analysis and design of wheeled mobile robots. Ad Robotics 19(1):73–99.  https://doi.org/10.1163/1568553053020241 CrossRefGoogle Scholar
  40. 40.
    Mazhar O, Ramdani S, Navarro B, Passama R, Cherubini A (2018) Towards real-time physical human-robot interaction using skeleton information and hand gestures. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  41. 41.
    Mohri A, Yamamoto M, Hirano G (1996) Cooperative path planning for two manipulators. In: IEEE international conference on robotics and automationGoogle Scholar
  42. 42.
    Muir PF, Neuman CP (1987) Kinematic modeling of wheeled mobile robots. J Robot Syst 4(2):281–340.  https://doi.org/10.1002/rob.4620040209 CrossRefGoogle Scholar
  43. 43.
    Nakagaki H, Kitagi K, Ogasawara T, Tsukune H (1996) Study of insertion task of a flexible wire into a hole by using visual tracking observed by stereo vision. In: IEEE international conference on robotics and automation, pp 3209–3214Google Scholar
  44. 44.
    Navarro B, Cherubini A, Fonte A, Passama R, Poisson G, Fraisse P (2016) An ISO10218-compliant adaptive damping controller for safe physical human-robot interaction. In: IEEE international conference on robotics and automationGoogle Scholar
  45. 45.
    Navarro B, Cherubini A, Fonte A, Poisson G, Fraisse P (2017) A framework for intuitive collaboration with a mobile manipulator. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  46. 46.
    Navarro B, Fonte A, Fraisse P, Poisson G (2018) Cherubini, a.: in pursuit of safety: an open-source library for physical human-robot interaction. IEEE Robot Autom Mag 25(2):39–50.  https://doi.org/10.1109/mra.2018.2810098 CrossRefGoogle Scholar
  47. 47.
    Navarro-Alarcon D, Liu YH (2018) Fourier-based shape servoing: a new feedback method to actively deform soft objects into desired 2-D image contours. IEEE Trans on Robotics 34(1):272–279CrossRefGoogle Scholar
  48. 48.
    Neto P, Pereira D, Pires JN, Moreira AP (2016) Gesture recognition for Human-Robot collaboration: a review. In: Proceedings of the 7th Swedish production symposium, pp 1–12Google Scholar
  49. 49.
    Neto P, Pires JN, Moreira AP (2010) High-level programming and control for industrial robotics: using a hand-held accelerometer-based input device for gesture and posture recognition. Ind Robot 37:137–147CrossRefGoogle Scholar
  50. 50.
    Oftadeh R, Aref MM, Ghabcheloo R, Mattila J (2013) Bounded-velocity motion control of four wheel steered mobile robots. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics, pp 255–260Google Scholar
  51. 51.
    Oftadeh R, Ghabcheloo R, Mattila J (2013) A novel time optimal path following controller with bounded velocities for mobile robots with independently steerable wheels. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4845–4851Google Scholar
  52. 52.
    Oftadeh R, Ghabcheloo R, Mattila J (2014) Time optimal path following with bounded velocities and accelerations for mobile robots with independently steerable wheels. In: IEEE international conference on robotics and automation (ICRA), pp 2925–2931Google Scholar
  53. 53.
    Oftadeh R, Ghabcheloo R, Mattila J (2015) A time-optimal bounded velocity path-following controller for generic wheeled mobile robots. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 676–683.  https://doi.org/10.1109/ICRA.2015.7139252
  54. 54.
    Ortenzi D, Muthusamy R, Freddi A, Monteriù A, Kyrki V (2018) Dual-arm cooperative manipulation under joint limit constraints. Robot Auton Syst 99:110–120CrossRefGoogle Scholar
  55. 55.
    Panagou D, Kumar V (2014) Cooperative visibility maintenance for leader-follower formations in obstacle environments. IEEE Trans on Robotics 30(4):831–844CrossRefGoogle Scholar
  56. 56.
    Polverini MP, Zanchettin AM, Castello S, Rocco P (2016) Sensorless and constraint based peg-in-hole task execution with a dual-arm robot. In: IEEE international conference on robotics and automationGoogle Scholar
  57. 57.
    Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source softwareGoogle Scholar
  58. 58.
    Reister DB, Unseren MA (1993) Position and constraint force control of a vehicle with two or more steerable drive wheels. IEEE Trans Robot Autom 9 (6):723–731.  https://doi.org/10.1109/70.265916 CrossRefGoogle Scholar
  59. 59.
    Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis (IJCV) 115(3):211–252MathSciNetCrossRefGoogle Scholar
  60. 60.
    Schwesinger U, Pradalier C, Siegwart R (2012) A novel approach for steering wheel synchronization with velocity/acceleration limits and mechanical constraints. In: IEEE/RSJ international conference on intelligent robots and systems, pp 5360–5366.  https://doi.org/10.1109/IROS.2012.6385644
  61. 61.
    Selekwa MF, Nistler JR (2011) Path tracking control of four wheel independently steered ground robotic vehicles. In: 2011 50th IEEE conference on decision and control and european control conference, pp 6355–6360.  https://doi.org/10.1109/CDC.2011.6160677
  62. 62.
    Sorour M, Cherubini A, Fraisse P, Passama R (2017) Motion discontinuity-robust controller for steerable mobile robots. IEEE Robotics and Automation Letters 2(2):452–459.  https://doi.org/10.1109/LRA.2016.2638466 CrossRefGoogle Scholar
  63. 63.
    Sorour M, Cherubini A, Passama R, Fraisse P (2016) Kinematic modeling and singularity treatment of steerable wheeled mobile robots with joint acceleration limits. In: IEEE international conference on robotics and automation, pp 2110–2115.  https://doi.org/10.1109/ICRA.2016.7487360
  64. 64.
    Stoger C, Muller A, Gattringer H (2015) Kinematic analysis and singularity robust path control of a non-holonomic mobile platform with several steerable driving wheels. In: 2015 IEEE/RSJ international conference on intelligent robots and systems, pp 4140–4145.  https://doi.org/10.1109/IROS.2015.7353962
  65. 65.
    Suarez R, Palomo-Avellaneda L, Martinez J, Clos D, García N (2018) Development of a dexterous dual-arm omnidirectional mobile manipulator. In: IFAC symposium on robot control, SyRoCoCrossRefGoogle Scholar
  66. 66.
    Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826Google Scholar
  67. 67.
    Tarbouriech S, Navarro B, Fraisse P, Crosnier A, Cherubini A, Sallé D. (2018) Dual-arm relative tasks performance using sparse kinematic control. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar
  68. 68.
    Thuilot B, Novel B, Micaelli A (1996) Modeling and feedback control of mobile robots equipped with several steering wheels. IEEE Trans Rob Autom 12(3):375–390.  https://doi.org/10.1109/70.499820 CrossRefGoogle Scholar
  69. 69.
    Wakamatsu H, Hirai S, Iwata K (1995) Modeling of linear objects considering bend, twist, and extensional deformations. In: IEEE international conference on robotics and automationGoogle Scholar
  70. 70.
    Wei SE, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolutional pose machines. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  71. 71.
    Yazdani M (2012) Fast human movements and sparse optimal control policies. Ph.D. thesis, University of California, San DiegoGoogle Scholar
  72. 72.
    Zhu J, Navarro B, Fraisse P, Crosnier A, Cherubini A (2018) Dual-arm robotic manipulation of flexible cables. In: IEEE/RSJ international conference on robots and intelligent systemsGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Andrea Cherubini
    • 1
    Email author
  • Robin Passama
    • 1
  • Benjamin Navarro
    • 1
  • Mohamed Sorour
    • 1
    • 2
  • Abdellah Khelloufi
    • 1
    • 3
    • 4
  • Osama Mazhar
    • 1
  • Sonny Tarbouriech
    • 1
    • 5
  • Jihong Zhu
    • 1
  • Olivier Tempier
    • 1
  • André Crosnier
    • 1
  • Philippe Fraisse
    • 1
  • Sofiane Ramdani
    • 1
  1. 1.LIRMM, Université de Montpellier, CNRSMontpellierFrance
  2. 2.Lincoln Center for Autonomous Systems (L-CAS) School of Computer ScienceUniversity of LincolnLincolnUK
  3. 3.Center for Development of Advanced Technologies CDTAAlgiersAlgeria
  4. 4.Faculty of Electronics and Computer ScienceUSTHBAlgiersAlgeria
  5. 5.Tecnalia Research and InnovationDerioSpain

Personalised recommendations