Advertisement

The method of 3D nozzle tilt cutting of abrasive water jet

  • Xiaojin MiaoEmail author
  • Feng Ye
  • Meiping Wu
  • Lei Song
  • Zhengrong Qiang
ORIGINAL ARTICLE

Abstract

Striation and kerf taper are two main defects of abrasive water jet cutting. Improving these two defects will help in improving the cutting quality. Firstly, the nozzle tilt cutting method for striation improvement and the nozzle tilt cutting method for kerf taper improvement were analyzed in this paper. On this basis, by integrating these two methods, the method of 3D nozzle tilt cutting was proposed. The characteristics of the method were analyzed based on experiments. Finally, the effect of the method of 3D nozzle tilt cutting on cutting quality was experimented. The results show that the method can improve the striation and the kerf taper simultaneously under the premise of keeping the cutting efficiency unchanged, which greatly improved the quality of abrasive water jet cutting.

Keywords

Abrasive water jet Nozzle tilt cutting Striation Kerf taper Initial zone 

Notes

Funding information

This work is supported by, Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1841) and National Natural Science Foundation of China (51575237).

References

  1. 1.
    Li W, Zhu H, Wang J (2013) An investigation into the radial-mode abrasive waterjet turning process on high tensile steels. Int J Mech Sci 77(4):365–376CrossRefGoogle Scholar
  2. 2.
    Gan Z, Yu G, He X, Li S (2017) Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int J Heat Mass Transf 104:28–38CrossRefGoogle Scholar
  3. 3.
    El-Domiaty DAA, Shabara MA, Abdel-Rahman AA, Al-Sabeeh AK (1996) On the modelling of abrasive waterjet cutting. Int J Adv Manuf Technol 12(4):255–265CrossRefGoogle Scholar
  4. 4.
    Fowler G, Shipway PH, Pashby IR (2005) Abrasive water-jet controlled depth milling of Ti6Al4V alloy - an investigation of the role of jet-workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol 161(3):407–414CrossRefGoogle Scholar
  5. 5.
    Alberdi A, Rivero A, Lacalle LNLD, Etxeberria I, Suarez A (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51(5–8):467–480CrossRefGoogle Scholar
  6. 6.
    Rabani A, Madariaga J, Bouvier C, Axinte D (2016) An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J Manuf Processes 22:99–107CrossRefGoogle Scholar
  7. 7.
    Hlaváček P, Carach J, Hloch S, Vasilko K, Klichová D, Klich J (2015) Sandstone turning by abrasive waterjet. Rock Mech Rock Eng 48(6):2489–2493CrossRefGoogle Scholar
  8. 8.
    Liang Z, Xie B, Liao S, Zhou J (2015) Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int J Adv Manuf Technol 80(5–8):887–905CrossRefGoogle Scholar
  9. 9.
    Che CL, Huang CZ, Wang J, Zhu HT, Li QL (2008) Theoretical model of surface roughness for polishing super hard materials with abrasive waterjet. Key Eng Mater 375–376:465–469CrossRefGoogle Scholar
  10. 10.
    Zhang S, Wu Y, Wang S (2015) An exploration of an abrasive water jet cutting front profile. Int J Adv Manuf Technol 80(9–12):1685–1688CrossRefGoogle Scholar
  11. 11.
    Hashish M (1988) Visualization of the abrasive water jet cutting process. Exp Mech 28(2):159–169CrossRefGoogle Scholar
  12. 12.
    Chen L, Siores E, Wong WCK (1996) Kerf characteristics in abrasive waterjet cutting of ceramic materials. Int J Mach Tool Manu 36(11):1201–1206CrossRefGoogle Scholar
  13. 13.
    Arola D, Ramulu M (1996) A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composite. J Eng Mater Technol 118(2):256–265CrossRefGoogle Scholar
  14. 14.
    Zhang S, Wu Y, Wang Y (2011) An investigation of surface quality cut by abrasive water jet. Open Mech Eng J 5:166–177CrossRefGoogle Scholar
  15. 15.
    Deam RT, Lemma E, Ahmed DH (2004) Modelling of the abrasive water jet cutting process. Wear 257(9):877–891CrossRefGoogle Scholar
  16. 16.
    Lima CEDAE, Lebrón R, Souza AJD (2016) Study of influence of traverse speed and abrasive mass flowrate in abrasive water jet machining of gemstones. Int J Adv Manuf Technol 83(1–4):77–87CrossRefGoogle Scholar
  17. 17.
    Hlaváč LM (2009) Investigation of the abrasive waterjet trajectory curvature inside the kerf. J Mater Process Technol 209(8):4154–4161CrossRefGoogle Scholar
  18. 18.
    Hlaváč LM, Hlaváčová IM, Gembalová L (2009) Experimental method for the investigation of the abrasive water jet cutting quality. J Mater Process Tech 209(20):6190–6195CrossRefGoogle Scholar
  19. 19.
    Chen FL, Wang J, Lemma E (2003) Striation formation mechanisms on the jet cutting surface. J Mater Process Tech 141(2):213–218CrossRefGoogle Scholar
  20. 20.
    Wang J (1999) Abrasive waterjet machining of polymer matrix composites-cutting performance, erosive process and predictive models. Int J Adv Manuf Technol 15(10):757–768CrossRefGoogle Scholar
  21. 21.
    Hashish M (2007) Benefits of dynamic waterjet angle compensation. In: 2007 American WJTA conference and expo. Houston, pp: 1-H.Google Scholar
  22. 22.
    Alberdi A, Artaza T, Suárez A (2016) An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. Int J Adv Manuf Technol 86(1–4):691–704CrossRefGoogle Scholar
  23. 23.
    Wang S, Zhang S, Wu Y (2017) A key parameter to characterize the kerf profile error generated by abrasive water-jet. Int J Adv Manuf Technol 90(5–8):1265–1275CrossRefGoogle Scholar
  24. 24.
    Shanmugam DK, Wang J, Liu H (2008) Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. Int J Mach Tool Manu 48(14):1527–1534CrossRefGoogle Scholar
  25. 25.
    Zeng J, Henning A (2009) Kerf characterization in abrasive waterjet cutting. In: 2009 American WJTA conference and expo. Houston, pp: 1-H.Google Scholar
  26. 26.
    Hashish M (1989) A model for abrasive-waterjet (AWJ) machining. J Eng Mater-T Asme 111(2):154–162CrossRefGoogle Scholar
  27. 27.
    Vikram G, Babu NR (2002) Modelling and analysis of abrasive water jet cut surface topography. Int J Mach Tool Manu 42(12):1345–1354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Xiaojin Miao
    • 1
    Email author
  • Feng Ye
    • 1
  • Meiping Wu
    • 1
  • Lei Song
    • 1
  • Zhengrong Qiang
    • 1
  1. 1.School of Mechanical EngineeringJiangnan UniversityWuxiChina

Personalised recommendations