Advertisement

Analysis and characterisation of WC-10Co and AISI 4340 steel bimetal composite produced by powder–solid diffusion bonding

  • Mahadi Hasan
  • Jingwei Zhao
  • Zhenyi Huang
  • Dongbin Wei
  • Zhengyi JiangEmail author
ORIGINAL ARTICLE
  • 356 Downloads

Abstract

Cermet and steel material bonding is a challenging task, due to their large difference of physical properties, e.g. coefficient of thermal expansion. In this study, a hot compaction diffusion bonding method was employed to fabricate a small-dimensional bimetallic composite of WC-10Co and high strength AISI 4340 steel, where the cermet was used in powder form and the steel as solid. The bimetal composite was characterised by microstructural analysis and mechanical properties evaluation. The interface microstructure reveals a successful metallurgical bonding between the cermet and steel materials. The influence of sintering temperature (1050–1250 °C) was examined at intervals of 50 °C. This study shows that the properties of sintered powder and the bonding quality with the steel improve with an increase in sintering temperature. A bonding beneficiary reaction layer was observed to grow at the joining interface by mutual diffusion of the alloying elements, which increases with the increasing temperature. The maximum width of the reaction layer observed was 4.13 μm and consists mainly of intermetallic ternary carbides. The bonding shear strength of the interface is found to be slightly higher than claimed in previous studies. The developed bimetal composite could be used in applications where a combination of high strength and hardness is required.

Keywords

Powder–solid bonding Cermet–metal layered composite Mutual diffusion Hot compaction diffusion bonding 

Notes

Acknowledgements

We acknowledge the use of facilities within the UOW Electron Microscopy Centre.

Funding information

The authors received financial support from the Australian Research Council (ARC) for the current study.

References

  1. 1.
    Xu J, Gao X, Jiang Z, Wei D, Jiao S (2016) Microstructure and hot deformation behaviour of high-carbon steel/low-carbon steel bimetal prepared by centrifugal composite casting. Int J Adv Manuf Technol 86(1):817–827CrossRefGoogle Scholar
  2. 2.
    Zhang Z, Xu W, Gu T, Shan D (2018) Fabrication of steel/aluminum clad tube by spin bonding and annealing treatment. Int J Adv Manuf Technol 94(9):3605–3617CrossRefGoogle Scholar
  3. 3.
    Pascal C, Chaix JM, Doré F, Allibert CH (2009) Design of multimaterial processed by powder metallurgy: processing of a (steel/cemented carbides) bilayer material. J Mater Process Technol 209(3):1254–1261CrossRefGoogle Scholar
  4. 4.
    Zafar S, Sharma AK (2014) Development and characterisations of WC–12Co microwave clad. Mater Charact 96:241–248CrossRefGoogle Scholar
  5. 5.
    Hasan M, Zhao J, Huang Z, Chang L, Zhou H, Jiang Z (2018) Analysis of sintering and bonding of ultrafine WC powder and stainless steel by hot compaction diffusion bonding. Fusion Eng Des 133:39–50CrossRefGoogle Scholar
  6. 6.
    Lou D, Hellman J, Luhulima D, Liimatainen J, Lindroos VK (2003) Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater Sci Eng A 340(1):155–162CrossRefGoogle Scholar
  7. 7.
    Lemus-Ruiz J, Salas-Villaseñor AL, Flores O (2009) Joining of WC-Co to Ni by direct diffusion bonding. Advanced Materials Research 68:127–132Google Scholar
  8. 8.
    Hasan M, Zhao J, Jiang Z (2017) A review of modern advancements in micro drilling techniques. J Manuf Process 29:343–375CrossRefGoogle Scholar
  9. 9.
    Lemus-Ruiz J, Ceja-Cárdenas L, Verduzco JA, Flores O (2008) Joining of tungsten carbide to nickel by direct diffusion bonding and using a Cu–Zn alloy. J Mater Sci 43(18):6296–6300CrossRefGoogle Scholar
  10. 10.
    Feng K, Chen H, Xiong J, Guo Z (2013) Investigation on diffusion bonding of functionally graded WC–Co/Ni composite and stainless steel. Mater Des 46:622–626CrossRefGoogle Scholar
  11. 11.
    Missiaen J et al (2011) Design of a W/steel functionally graded material for plasma facing components of DEMO. J Nucl Mater 416(3):262–269CrossRefGoogle Scholar
  12. 12.
    Yang Z-h et al (2014) Tungsten/steel diffusion bonding using Cu/W–Ni/Ni multi-interlayer. Trans Nonferrous Metals Soc China 24(8):2554–2558CrossRefGoogle Scholar
  13. 13.
    Basuki WW, Aktaa J (2011) Investigation of tungsten/EUROFER97 diffusion bonding using Nb interlayer. Fusion Eng Des 86(9):2585–2588CrossRefGoogle Scholar
  14. 14.
    Zhong H, Guo Z, Xiong J (2017) Liquid phase sintering-based diffusion bonding of Ti(C,N)-based cermet and steel. Int J Adv Manuf Technol 88(5):1813–1819CrossRefGoogle Scholar
  15. 15.
    Greuner H et al (2005) Vacuum plasma-sprayed tungsten on EUROFER and 316L: results of characterisation and thermal loading tests. Fusion Eng Des 75:333–338CrossRefGoogle Scholar
  16. 16.
    Hirose T, Shiba K, Ando M, Enoeda M, Akiba M (2006) Joining technologies of reduced activation ferritic/martensitic steel for blanket fabrication. Fusion Eng Des 81(1):645–651CrossRefGoogle Scholar
  17. 17.
    Rosinski M, Fortuna E, Michalski A, Pakiela Z, Kurzydlowski KJ (2007) W/Cu composites produced by pulse plasma sintering technique (PPS). Fusion Eng Des 82(15):2621–2626CrossRefGoogle Scholar
  18. 18.
    Shinoda Y, Akatsu T, Wakai F (2008) Integrated molding of nanocrystalline tungsten carbide powder with stainless steel. Mater Sci Eng B 148(1):145–148CrossRefGoogle Scholar
  19. 19.
    Zhong Z, Hinoki T, Nozawa T, Park YH, Kohyama A (2010) Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer. J Alloys Compd 489(2):545–551CrossRefGoogle Scholar
  20. 20.
    Rosiński M, Kruszewski MJ, Michalski A, Fortuna-Zaleśna E, Ciupiński Ł, Kurzydłowski KJ (2011) W/steel joint fabrication using the pulse plasma sintering (PPS) method. Fusion Eng Des 86(9–11):2573–2576CrossRefGoogle Scholar
  21. 21.
    Giménez S, Huang SG, van der Biest O, Vleugels J (2007) Chemical reactivity of PVD-coated WC–Co tools with steel. Appl Surf Sci 253(7):3547–3556CrossRefGoogle Scholar
  22. 22.
    Fang ZZ, Wang X, Ryu T, Hwang KS, Sohn HY (2009) Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – a review. Int J Refract Met Hard Mater 27(2):288–299CrossRefGoogle Scholar
  23. 23.
    Sun L, Jia C-C, Xian M (2007) A research on the grain growth of WC–Co cemented carbide. Int J Refract Met Hard Mater 25(2):121–124CrossRefGoogle Scholar
  24. 24.
    Prathabrao M, Amin SYM, Ibrahim M (2017) Review on sintering process of WC-Co cemented carbide in metal injection molding technology. In: IOP Conference Series: Materials Science and Engineering. IOP PublishingGoogle Scholar
  25. 25.
    Gurland J (1988) New scientific approaches to development of tool materials. Int Mater Rev 33(1):151–166CrossRefGoogle Scholar
  26. 26.
    Balasubramanian M (2016) Characterization of diffusion-bonded titanium alloy and 304 stainless steel with Ag as an interlayer. Int J Adv Manuf Technol 82(1):153–162CrossRefGoogle Scholar
  27. 27.
    Safarian A, Subaşi M, Karataş Ç (2017) The effect of sintering parameters on diffusion bonding of 316L stainless steel in inserted metal injection molding. Int J Adv Manuf Technol 89(5):2165–2173CrossRefGoogle Scholar
  28. 28.
    Frisk K, Dumitrescu L, Ekroth M, Sunduman B, Jansson B, Kruse O (2001) Development of a database for cemented carbides: thermodynamic modeling and experiments. J Phase Equilib 22(6):645–655CrossRefGoogle Scholar
  29. 29.
    Petersson A, Ågren J (2005) Rearrangement and pore size evolution during WC–Co sintering below the eutectic temperature. Acta Mater 53(6):1673–1683CrossRefGoogle Scholar
  30. 30.
    Inc., D.S (2017) Offering versatility and performance for today’s demanding research and production applications. The Gleeble 3500 Thermal System. Available from: https://www.gleeble.com/products/gleeble-3500.html
  31. 31.
    Anstis G et al (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64(9):533–538CrossRefGoogle Scholar
  32. 32.
    Santhanam AT, Tierney P, Hunt JL (1990) Powder metallurgy. ASM handbook, vol 7. ASM International, Metals ParkGoogle Scholar
  33. 33.
    EVans AG, Charles EA (1976) Fracture toughness determinations by indentation. J Am Ceram Soc 59(7–8):371–372CrossRefGoogle Scholar
  34. 34.
    West EG (1982) Copper and its alloys. Ellis Horwood Ltd./Halsted Press, Chichester, England. Edition 1Google Scholar
  35. 35.
    Cha SI, Hong SH, Kim BK (2003) Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Mater Sci Eng A 351(1–2):31–38CrossRefGoogle Scholar
  36. 36.
    Tarraste M et al (2015) Reactive sintering of bimodal WC-Co hardmetals. Mater Sci 21(3):382–385Google Scholar
  37. 37.
    Goren-Muginstein G, Berger S, Rosen A (1998) Sintering study of nanocrystalline tungsten carbide powders. Nanostruct Mater 10(5):795–804CrossRefGoogle Scholar
  38. 38.
    Arato P et al (1998) Solid or liquid phase sintering of nanocrystalline WC/Co hardmetals. Nanostruct Mater 10(2):245–255CrossRefGoogle Scholar
  39. 39.
    Leiderman M, Botstein O, Rosen A (1997) Sintering, microstructure, and properties of submicrometre cemented carbides. Powder Metall 40(3):219–225CrossRefGoogle Scholar
  40. 40.
    Ashby MF (1974) A first report on sintering diagrams. Acta Metall 22(3):275–289CrossRefGoogle Scholar
  41. 41.
    Hasan M, Kasi AK, Kasi JK, Afzulpurkar N (2012) Anodic aluminum oxide (AAO) to AAO bonding and their application for fabrication of 3D microchannel. Nanosci Nanotechnol Lett 4(5):569–573CrossRefGoogle Scholar
  42. 42.
    Dong L, Chen W, Hou L, Liu Y, Luo Q (2016) Metallurgical process analysis and microstructure characterization of the bonding interface of QAl9-4 aluminum bronze and 304 stainless steel composite materials. J Mater Process Technol 238:325–332CrossRefGoogle Scholar
  43. 43.
    Takemoto S et al (2007) Diffusion of tungsten in α-iron. Philos Mag 87(11):1619–1629CrossRefGoogle Scholar
  44. 44.
    Hoppin GS et al (1972) Powder for diffusion bonding of superalloy members. Google PatentsGoogle Scholar
  45. 45.
    Suetin DV, Shein IR, Ivanovskii AL (2009) Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations. Phys B Condens Matter 404(20):3544–3549CrossRefGoogle Scholar
  46. 46.
    Thomazic A, Pascal C, Chaix JM (2010) Fabrication of (cemented carbides/steel) bilayered materials by powder metallurgy. Materials Science Forum 631:239–244Google Scholar
  47. 47.
    Machado IF, Girardini L, Lonardelli I, Molinari A (2009) The study of ternary carbides formation during SPS consolidation process in the WC–Co–steel system. Int J Refract Met Hard Mater 27(5):883–891CrossRefGoogle Scholar
  48. 48.
    Ojo-kupoluyi OJ et al (2017) Role of carbon addition on the microstructure and mechanical properties of cemented tungsten carbide and steel bilayer. Int J Adv Manuf Technol 92(9):3363–3371CrossRefGoogle Scholar
  49. 49.
    Dubrovinskaia NA, Dubrovinsky LS, Saxena SK, Selleby M, Sundman B (1999) Thermal expansion and compressibility of Co6W6C. J Alloys Compd 285(1):242–245CrossRefGoogle Scholar
  50. 50.
    Hill RJ (1991) Expanded use of the Rietveld method in studies of phase abundance in multiphase mixtures. Powder Diffract 6(2):74–77MathSciNetCrossRefGoogle Scholar
  51. 51.
    Srivatsan TS, Woods R, Petraroli M, Sudarshan TS (2002) An investigation of the influence of powder particle size on microstructure and hardness of bulk samples of tungsten carbide. Powder Technol 122(1):54–60CrossRefGoogle Scholar
  52. 52.
    Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng A 273-275:40–57CrossRefGoogle Scholar
  53. 53.
    Gupta D, Sharma AK (2012) Microstructural characterization of cermet cladding developed through microwave irradiation. J Mater Eng Perform 21(10):2165–2172CrossRefGoogle Scholar
  54. 54.
    Bansal A, Zafar S, Sharma AK (2015) Microstructure and abrasive wear performance of Ni-Wc composite microwave clad. J Mater Eng Perform 24(10):3708–3716CrossRefGoogle Scholar
  55. 55.
    Pascal C, Thomazic A, Antoni-Zdziobek A, Chaix JM (2012) Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial. Int J Mater Res 103(3):296–308CrossRefGoogle Scholar
  56. 56.
    Lee W-S, Su T-T (1999) Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. J Mater Process Technol 87(1):198–206CrossRefGoogle Scholar
  57. 57.
    AZoM (2012) AISI 4340 alloy steel (UNS G43400). Available from: https://www.azom.com/article.aspx?ArticleID=6772
  58. 58.
    MatWeb (2013) AISI 4340 steel, annealed, 25 mm round. Available from: http://www.matweb.com/search/DataSheet.aspx?MatGUID=fd1b43a97a8a44129b32b9de0d7d6c1a&ckck=1
  59. 59.
    Kim H-C, Shon IJ, Yoon JK, Doh JM (2006) Comparison of sintering behavior and mechanical properties between WC−8Co and WC−8Ni hard materials produced by high-frequency induction heating sintering. Met Mater Int 12(2):141–146CrossRefGoogle Scholar
  60. 60.
    Lin C, Kny E, Yuan G, Djuricic B (2004) Microstructure and properties of ultrafine WC–0.6 VC–10Co hardmetals densified by pressure-assisted critical liquid phase sintering. J Alloys Compd 383(1):98–102CrossRefGoogle Scholar
  61. 61.
    Maheshwari P, Fang ZZ, Sohn HY (2007) Early-stage sintering densification and grain growth of nanosized WC-Co powders. Int J Powder Metall (Princeton, NJ) 43(2):41–47Google Scholar
  62. 62.
    Wang X, Fang ZZ, Sohn HY (2008) Grain growth during the early stage of sintering of nanosized WC–Co powder. Int J Refract Met Hard Mater 26(3):232–241CrossRefGoogle Scholar
  63. 63.
    Romanova N, Kreimer G, Tumanov V (1974) Effects of residual porosity on the properties of tungsten carbide-cobalt hard alloys. Soviet Powder Metall Met Ceram 13(8):670–673CrossRefGoogle Scholar
  64. 64.
    Zhang XZ, Liu GW, Tao JN, Shao HC, Fu H, Pan TZ, Qiao GJ (2017) Vacuum brazing of WC-8Co cemented carbides to carbon steel using pure Cu and Ag-28Cu as filler metal. J Mater Eng Perform 26(2):488–494CrossRefGoogle Scholar
  65. 65.
    Paul CP, Alemohammad H, Toyserkani E, Khajepour A, Corbin S (2007) Cladding of WC–12 Co on low carbon steel using a pulsed Nd:YAG laser. Mater Sci Eng A 464(1):170–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Mahadi Hasan
    • 1
    • 2
  • Jingwei Zhao
    • 1
  • Zhenyi Huang
    • 2
  • Dongbin Wei
    • 3
  • Zhengyi Jiang
    • 1
    Email author
  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  2. 2.School of Materials Science and EngineeringAnhui University of TechnologyMaanshanChina
  3. 3.School of Electrical, Mechanical and Mechatronic SystemsUniversity of Technology SydneyUltimoAustralia

Personalised recommendations