Material removal mechanisms in chemical-magnetorheological compound finishing

  • Huazhuo Liang
  • Qiusheng Yan
  • Jiabin LuEmail author
  • Bin Luo
  • Xiaolan Xiao


With a view to ultra-precision polishing of SiC wafers, the chemical-magnetorheological compound finishing (CMRF) method was proposed based on the principle of the Fenton reaction. To study material removal characteristics of CMRF, a force model for polishing pads based on magnetorheological (MR) effects was built. Through the theory of solid-phase particles, this study conducted a force analysis of carbonyl iron powders and abrasives and calculated polishing forces of a single polishing pad based on MR effects on a workpiece surface. Based on this, according to the Preston equation, a material removal model was established. By conducting the CMRF test on monocrystalline SiC wafers, it is found that the test results were consistent with theoretical calculations.


Chemical-magnetorheological compound finishing Modelling Polishing force Material removal SiC wafer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work was supported by the NSFC-Guangdong Joint Fund Project (Grant No. U1801259), Science and Technology Project of Guangdong Province (Grant No. 2016A010102014), and Guangdong Graduate Education Innovation Project (2018JGXM35, 2018SFKC15).


  1. 1.
    Kermany AR, Bennett JS, Valenzuela VM, Bowen WP, Iacopi F (2016) Potential of epitaxial silicon carbide microbeam resonators for chemical sensing. Phys Status Solidi A 214(4):1–16. Google Scholar
  2. 2.
    Liu YJ, Liu YC, Zhao XM (2017) The research of EM wave absorbing properties of ferrite/silicon carbide double coated polyester woven fabric. J Text Inst 109(1):1–7. Google Scholar
  3. 3.
    Raynaud C, Tournier D, Morel H, Planson D (2010) Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices. Diam Relat Mater 19(1):1–6.
  4. 4.
    Deng H, Hosoya K, Imanishi Y, Endo K, Yamamura K (2015) Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochem Commun 52:5–8. CrossRefGoogle Scholar
  5. 5.
    Okumura H (2006) Present status and future prospect of widegap semiconductor high-power devices. Jpn J Appl Phys 45(10A):7565–4586 Accessed 23 March 2019
  6. 6.
    Aida H, Doi T, Takeda H, Katakura H, Kim SW, Koyama K, Yamazaki T, Uneda M (2012) Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials. Curr Appl Phys 12(9):S41–S46.
  7. 7.
    Yagi K, Murata J, Kubota A, Sano Y, Hara H, Okamoto T, Arima K, Mimura H, Yamauchi K (2008) Catalyst-referred etching of 4H-SiC substrate utilizing hydroxyl radicals generated from hydrogen peroxide molecules. Surf Interface Anal 40(6-7):998–1001. CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Pan GS, Shi XL, Gong H, Luo GH, Gu ZH (2014) Chemical mechanical planarization (CMP) of on-axis Si-face SiC wafer using catalyst nanoparticles in slurry. Surf Coat Technol 251:48–55. CrossRefGoogle Scholar
  9. 9.
    Seok J, Kim YJ, Jang KI, Min BK, Lee SJ (2007) A study on the fabrication of curved surfaces using magnetorheological fluid finishing. Int J Mach Tool Manu 47(14):2077–2090. CrossRefGoogle Scholar
  10. 10.
    Singh AK, Jha S, Pandey PM (2011) Design and development of nanofinishing process for 3D surfaces using ball end MR finishing tool. Int J Mach Tool Manu 51(2):142–151. CrossRefGoogle Scholar
  11. 11.
    Jiao L, Wu Y, Wang X, Guo H, Liang Z (2013) Fundamental performance of magnetic compound fluid (MCF) wheel in ultra-fine surface finishing of optical glass. Int J Mach Tool Manu 75(12):109–118. CrossRefGoogle Scholar
  12. 12.
    Liang HZ, Yan QS, Lu JB, Gao WQ (2016) Experiment on chemical magnetorheological finishing of SiC single crystal wafer. Mater Sci Forum 874:407–414. CrossRefGoogle Scholar
  13. 13.
    Liang HZ, Lu JB, Pan JS, Yan QS (2018) Material removal process of single-crystal SiC in chemical-magnetorheological compound finishing. Int J Adv Manuf Technol 94(1):2939–2948. CrossRefGoogle Scholar
  14. 14.
    Kordonski W, Gorodkin S (2011) Material removal in magnetorheological finishing of optics. Appl Opt 50(14):1984–1994. CrossRefGoogle Scholar
  15. 15.
    Miao CL, Shaffir SN, Lambropoulos JC, Mici J, Jacobs SD (2009) Shear stress in magnetorheological finishing for glasses. Appl Opt 48(13):2585–2594. CrossRefGoogle Scholar
  16. 16.
    Kum CW, Sato T, Guo J, Liu K, Butler D (2018) A novel media properties-based material removal rate model for magnetic field-assisted finishing. Int J Mech Sci 141:189–197. CrossRefGoogle Scholar
  17. 17.
    Pan JS, Yan QS (2015) Material removal mechanism of cluster magnetorheological effect in plane polishing. Int J Adv Manuf Technol 81(9-12):2017–2026. CrossRefGoogle Scholar
  18. 18.
    Kim WB, Lee SJ, Kim YJ, Lee ES (2003) The electromechanical principle of electrorheological fluid-assisted polishing. Int J Mach Tool Manu 43(1):81–88. CrossRefGoogle Scholar
  19. 19.
    Pan JS, Yu P, Yan QS, Li WH (2017) An experimental analysis of strontium titanate ceramic substrates polished by magnetorheological finishing with dynamic magnetic fields formed by rotating magnetic poles. Smart Mater Struct 26(5):055017. CrossRefGoogle Scholar
  20. 20.
    Promislow JHE, Gast AP (1996) Magnetorheological fluid structure in a pulsed magnetic field. Langmuir 12(17):4095–4102. CrossRefGoogle Scholar
  21. 21.
    Tang X, Chen Y, Conrad H (1996) Structure and interaction force in a model magnetorheological system. J Intell Mater Syst Struct 7(5):517–521. CrossRefGoogle Scholar
  22. 22.
    Zhu YS, Gong XL, Dang H, Zhang XZ, Zhang PQ (2006) Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model. Chin J Chem Phys 19(2):126–130. CrossRefGoogle Scholar
  23. 23.
    Bossis G, Volkova O, Lacis S, Meunier A (2002) Magnetorheology: fluids, structures and rheology. Springer, Berlin Heidelberg, pp 202–230Google Scholar
  24. 24.
    Jolly MR, Carlson JD, Muoz BC (1996) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5(5):607–614 CrossRefGoogle Scholar
  25. 25.
    Bennett CL, Ross GF (1978) Time-domain electromagnetics and its applications. P IEEE 66(3):299–318. CrossRefGoogle Scholar
  26. 26.
    Sidpara A, Jain VK (2012) Theoretical analysis of forces in magnetorheological fluid based finishing process. Int J Mech Sci 56(1):50–59. CrossRefGoogle Scholar
  27. 27.
    Ginder JM, Davis LC (1994) Shear stresses in magnetorheological fluids: role of magnetic saturation. Appl Phys Lett 65(26):3410–3412. CrossRefGoogle Scholar
  28. 28.
    Castillo-Mejia D, Beaudoin S (2003) A locally relevant prestonian model for wafer polishing. J Electrochem Soc 150(2):G96–G102. CrossRefGoogle Scholar
  29. 29.
    Preston FW (1927) The theory and design of plate glass polishing machines. J Soc Glas Technol 11:214–256Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Huazhuo Liang
    • 1
  • Qiusheng Yan
    • 1
  • Jiabin Lu
    • 1
    Email author
  • Bin Luo
    • 1
  • Xiaolan Xiao
    • 1
  1. 1.School of Electromechanical EngineeringGuangdong University of TechnologyGuangzhouChina

Personalised recommendations